Abstract
Memories are thought to be stored within sparse collections of neurons known as engram ensembles. Neurons active during a training episode are allocated to an engram ensemble (‘engram neurons’). Memory retrieval is initiated by external sensory or internal cues present at the time of training reactivating engram neurons. Interestingly, optogenetic reactivation of engram ensemble neurons alone in the absence of external sensory cues is sufficient to induce behaviour consistent with memory retrieval in mice. However, there may exist differences between the behaviours induced by natural retrieval cues or artificial engram reactivation. Here, we compared two defensive behaviours (freezing and the syllable structure of ultrasonic vocalizations, USVs) induced by sensory cues present at training (natural memory retrieval) and optogenetic engram ensemble reactivation (artificial memory retrieval) in a threat conditioning paradigm in the same mice. During natural memory recall, we observed a strong positive correlation between freezing levels and distinct USV syllable features (characterized by an unsupervised algorithm, MUPET (Mouse Ultrasonic Profile ExTraction)). Moreover, we observed strikingly similar behavioural profiles in terms of freezing and USV characteristics between natural memory recall and artificial memory recall in the absence of sensory retrieval cues. Although our analysis focused on two behavioural measures of threat memory (freezing and USV characteristics), these results underscore the similarities between threat memory recall triggered naturally and through optogenetic reactivation of engram ensembles.
This article is part of a discussion meeting issue ‘Long-term potentiation: 50 years on’.
Footnotes
References
- 1.
Josselyn SA, Tonegawa S . 2020 Memory engrams: recalling the past and imagining the future. Science 367 ,eaaw4325 . (doi:10.1126/science.aaw4325) Crossref, PubMed, Web of Science, Google Scholar - 2.
Josselyn SA, Köhler S, Frankland PW . 2015 Finding the engram. Nat. Rev. Neurosci. 16 , 521–534. (doi:10.1038/nrn4000) Crossref, PubMed, Web of Science, Google Scholar - 3.
Tonegawa S, Pignatelli M, Roy DS, Ryan TJ . 2015 Memory engram storage and retrieval. Curr. Opin. Neurobiol. 35 , 101–109. (doi:10.1016/j.conb.2015.07.009) Crossref, PubMed, Web of Science, Google Scholar - 4.
Schacter DL . 1982 Stranger behind the Engram: theories of memory and the psychology. Hillsdale, NJ: Erlbaum Associates. Google Scholar - 5.
DeNardo LA, Liu CD, Allen WE, Adams EL, Friedmann D, Fu L, Guenthner CJ, Tessier-Lavigne M, Luo L . 2019 Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22 , 460–469. (doi:10.1038/s41593-018-0318-7) Crossref, PubMed, Web of Science, Google Scholar - 6.
Denny CA . 2014 Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 83 , 189–201. (doi:10.1016/j.neuron.2014.05.018) Crossref, PubMed, Web of Science, Google Scholar - 7.
Reijmers LG, Perkins BL, Matsuo N, Mayford M . 2007 Localization of a stable neural correlate of associative memory. Science 317 , 1230–1233. (doi:10.1126/science.1143839) Crossref, PubMed, Web of Science, Google Scholar - 8.
Sørensen AT . 2016 A robust activity marking system for exploring active neuronal ensembles. Elife 5 ,e13918 . (doi:10.7554/eLife.13918) Crossref, PubMed, Web of Science, Google Scholar - 9.
Jung JH, Wang Y, Rashid AJ, Zhang T, Frankland PW, Josselyn SA . 2023 Examining memory linking and generalization using scFLARE2, a temporally precise neuronal activity tagging system. Cell Rep. 42 , 113592. (doi:10.1016/j.celrep.2023.113592) Crossref, PubMed, Google Scholar - 10.
Kim CK, Sanchez MI, Hoerbelt P, Fenno LE, Malenka RC, Deisseroth K, Ting AY . 2020 A molecular calcium integrator reveals a striatal cell type driving aversion. Cell 183 , 2003–2019. (doi:10.1016/j.cell.2020.11.015) Crossref, PubMed, Web of Science, Google Scholar - 11.
Han JH . 2009 Selective erasure of a fear memory. Science 323 , 1492–1496. (doi:10.1126/science.1164139) Crossref, PubMed, Web of Science, Google Scholar - 12.
Hsiang HLL . 2014 Manipulating a “cocaine engram” in mice. J. Neurosci. 34 , 14115–14127. (doi:10.1523/JNEUROSCI.3327-14.2014) Crossref, PubMed, Web of Science, Google Scholar - 13.
Zhou Y, Won J, Karlsson MG, Zhou M, Rogerson T, Balaji J, Neve R, Poirazi P, Silva AJ . 2009 CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nat. Neurosci. 12 , 1438–1443. (doi:10.1038/nn.2405) Crossref, PubMed, Web of Science, Google Scholar - 14.
Yiu AP . 2014 Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron 83 , 722–735. (doi:10.1016/j.neuron.2014.07.017) Crossref, PubMed, Web of Science, Google Scholar - 15.
Park S, Kramer EE, Mercaldo V, Rashid AJ, Insel N, Frankland PW, Josselyn SA . 2016 Neuronal allocation to a hippocampal engram. Neuropsychopharmacology 41 , 2987–2993. (doi:10.1038/npp.2016.73) Crossref, PubMed, Web of Science, Google Scholar - 16.
Han JH . 2007 Neuronal competition and selection during memory formation. Science 316 , 457–460. (doi:10.1126/science.1139438) Crossref, PubMed, Web of Science, Google Scholar - 17.
Jung JH, Wang Y, Mocle AJ, Zhang T, Köhler S, Frankland PW, Josselyn SA . 2023 Examining the engram encoding specificity hypothesis in mice. Neuron 111 , 1830–1845. (doi:10.1016/j.neuron.2023.03.007) Crossref, PubMed, Web of Science, Google Scholar - 18.
Lacagnina AF . 2019 Distinct hippocampal engrams control extinction and relapse of fear memory. Nat. Neurosci. 22 , 753–761. (doi:10.1038/s41593-019-0361-z) Crossref, PubMed, Web of Science, Google Scholar - 19.
Tanaka KZ, Pevzner A, Hamidi AB, Nakazawa Y, Graham J, Wiltgen BJ . 2014 Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84 , 347–354. (doi:10.1016/j.neuron.2014.09.037) Crossref, PubMed, Web of Science, Google Scholar - 20.
Abdou K, Shehata M, Choko K, Nishizono H, Matsuo M, Muramatsu SI, Inokuchi K . 2018 Synapse-specific representation of the identity of overlapping memory engrams. Science 360 , 1227–1231. (doi:10.1126/science.aat3810) Crossref, PubMed, Web of Science, Google Scholar - 21.
Cowansage KK, Shuman T, Dillingham BC, Chang A, Golshani P, Mayford M . 2014 Direct reactivation of a coherent neocortical memory of context. Neuron 84 , 432–441. (doi:10.1016/j.neuron.2014.09.022) Crossref, PubMed, Web of Science, Google Scholar - 22.
Guskjolen A, Kenney JW, de la Parra J, Yeung BRA, Josselyn SA, Frankland PW . 2018 Recovery of “lost” infant memories in mice. Curr. Biol. 28 , 2283–2290. (doi:10.1016/j.cub.2018.05.059) Crossref, PubMed, Web of Science, Google Scholar - 23.
Kim J, Kwon JT, Kim HS, Josselyn SA, Han JH . 2014 Memory recall and modifications by activating neurons with elevated CREB. Nat. Neurosci. 17 , 65–72. (doi:10.1038/nn.3592) Crossref, PubMed, Web of Science, Google Scholar - 24.
Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S . 2012 Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484 , 381–385. (doi:10.1038/nature11028) Crossref, PubMed, Web of Science, Google Scholar - 25.
Redondo RL, Kim J, Arons AL, Ramirez S, Liu X, Tonegawa S . 2014 Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513 , 426–430. (doi:10.1038/nature13725) Crossref, PubMed, Web of Science, Google Scholar - 26.
Rogerson T, Cai DJ, Frank A, Sano Y, Shobe J, Lopez-Aranda MF, Silva AJ . 2014 Synaptic tagging during memory allocation. Nat. Rev. Neurosci. 15 , 157–169. (doi:10.1038/nrn3667) Crossref, PubMed, Web of Science, Google Scholar - 27.
Park S, Jung JH, Karimi SA, Jacob AD, Josselyn SA . 2022 Opto-extinction of a threat memory in mice. Brain Res. Bull. 191 , 61–68. (doi:10.1016/j.brainresbull.2022.10.012) Crossref, PubMed, Web of Science, Google Scholar - 28.
Tayler KK, Tanaka KZ, Reijmers LG, Wiltgen BJ . 2013 Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr. Biol. 23 , 99–106. (doi:10.1016/j.cub.2012.11.019) Crossref, PubMed, Web of Science, Google Scholar - 29.
Crawford M, Masterson FA . 1982 Species-specific defense reactions and avoidance learning. An evaluative review. Pavlov. J. Biol. Sci. 17 , 204–214. (doi:10.1007/BF03001275) Crossref, PubMed, Google Scholar - 30.
Rosen JB . 2004 The neurobiology of conditioned and unconditioned fear: a neurobehavioral system analysis of the amygdala. Behav. Cogn. Neurosci. Rev. 3 , 23–41. (doi:10.1177/1534582304265945) Crossref, PubMed, Google Scholar - 31.
Trott JM, Hoffman AN, Zhuravka I, Fanselow MS . 2022 Conditional and unconditional components of aversively motivated freezing, flight and darting in mice. Elife 11 ,e75663 . (doi:10.7554/eLife.75663) Crossref, PubMed, Web of Science, Google Scholar - 32.
Roelofs K, Dayan P . 2022 Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat. Rev. Neurosci. 23 , 568–580. (doi:10.1038/s41583-022-00608-2) Crossref, PubMed, Web of Science, Google Scholar - 33.
Korte SM, Koolhaas JM, Wingfield JC, McEwen BS . 2005 The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Biobehav. Rev. 29 , 3–38. (doi:10.1016/j.neubiorev.2004.08.009) Crossref, PubMed, Web of Science, Google Scholar - 34.
Kalin NH, Shelton SE . 1989 Defensive behaviors in infant rhesus monkeys: environmental cues and neurochemical regulation. Science 243 , 1718–1721. (doi:10.1126/science.2564702) Crossref, PubMed, Web of Science, Google Scholar - 35.
Hagenaars MA, Roelofs K, Stins JF . 2014 Human freezing in response to affective films. Anxiety Stress Coping 27 , 27–37. (doi:10.1080/10615806.2013.809420) Crossref, PubMed, Web of Science, Google Scholar - 36.
Noordewier MK, Scheepers DT, Hilbert LP . 2020 Freezing in response to social threat: a replication. Psychol. Res. 84 , 1890–1896. (doi:10.1007/s00426-019-01203-4) Crossref, PubMed, Web of Science, Google Scholar - 37.
Scattoni ML, Crawley J, Ricceri L . 2009 Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci. Biobehav. Rev. 33 , 508–515. (doi:10.1016/j.neubiorev.2008.08.003) Crossref, PubMed, Web of Science, Google Scholar - 38.
Grimsley JMS, Monaghan JJM, Wenstrup JJ . 2011 Development of social vocalizations in mice. PLoS One 6 ,e17460 . (doi:10.1371/journal.pone.0017460) Crossref, PubMed, Web of Science, Google Scholar - 39.
Liu RC, Miller KD, Merzenich MM, Schreiner CE . 2003 Acoustic variability and distinguishability among mouse ultrasound vocalizations. J. Acoust. Soc. Am. 114 , 3412–3422. (doi:10.1121/1.1623787) Crossref, PubMed, Web of Science, Google Scholar - 40.
Rieger NS, Marler CA . 2018 The function of ultrasonic vocalizations during territorial defence by pair-bonded male and female California mice. Anim. Behav. 135 , 97–108. (doi:10.1016/j.anbehav.2017.11.008) Crossref, Web of Science, Google Scholar - 41.
Van Segbroeck M, Knoll AT, Levitt P, Narayanan S . 2017 MUPET-mouse ultrasonic profile ExTraction: a signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94 , 465–485. (doi:10.1016/j.neuron.2017.04.005) Crossref, PubMed, Web of Science, Google Scholar - 42.
Rashid AJ . 2016 Competition between engrams influences fear memory formation and recall. Science 353 , 383–387. (doi:10.1126/science.aaf0594) Crossref, PubMed, Web of Science, Google Scholar - 43.
Josselyn SA, Frankland PW . 2018 Memory allocation: mechanisms and function. Annu. Rev. Neurosci. 41 , 389–413. (doi:10.1146/annurev-neuro-080317-061956) Crossref, PubMed, Web of Science, Google Scholar - 44.
Lau JMH, Rashid AJ, Jacob AD, Frankland PW, Schacter DL, Josselyn SA . 2020 The role of neuronal excitability, allocation to an engram and memory linking in the behavioral generation of a false memory in mice. Neurobiol. Learn. Mem. 174 , 107284. (doi:10.1016/j.nlm.2020.107284) Crossref, PubMed, Web of Science, Google Scholar - 45.
Stahlberg MA, Ramakrishnan C, Willig KI, Boyden ES, Deisseroth K, Dean C . 2019 Investigating the feasibility of channelrhodopsin variants for nanoscale optogenetics. Neurophotonics 6 ,015007 . (doi:10.1117/1.NPh.6.1.015007) Crossref, PubMed, Web of Science, Google Scholar - 46.
Vesuna S . 2020 Deep posteromedial cortical rhythm in dissociation. Nature 586 , 87–94. (doi:10.1038/s41586-020-2731-9) Crossref, PubMed, Web of Science, Google Scholar - 47.
Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K . 2007 Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8 , 577–581. (doi:10.1038/nrn2192) Crossref, PubMed, Web of Science, Google Scholar - 48.
Ko SW, Chatila T, Zhuo M . 2005 Contribution of CaMKIV to injury and fear-induced ultrasonic vocalizations in adult mice. Mol. Pain 1 ,10 . (doi:10.1186/1744-8069-1-10) Crossref, PubMed, Web of Science, Google Scholar - 49.
Laine MA . 2022 Sounding the alarm: sex differences in rat ultrasonic vocalizations during Pavlovian fear conditioning and extinction. eNeuro 9 ,ENEURO.0382-22.2022 . (doi:10.1523/ENEURO.0382-22.2022) Crossref, Google Scholar - 50.
Portfors CV . 2007 Types and functions of ultrasonic vocalizations in laboratory rats and mice. J. Am. Assoc. Lab. Anim. Sci. 46 , 28–34. https://pubmed.ncbi.nlm.nih.gov/17203913/ PubMed, Web of Science, Google Scholar - 51.
Paxinos G, Franklin KBJ . 2001 The Mouse brain in stereotaxic coordinates, p. 264, vol. xxv, 2nd edn. San Diego, CA: Academic Press. Google Scholar - 52.
Carlezon WA, Nestler EJ, Neve RL . 2000 Herpes simplex virus-mediated gene transfer as a tool for neuropsychiatric research. Crit. Rev. Neurobiol. 14 , 47–67. (doi:10.1080/08913810008443546) Crossref, PubMed, Google Scholar - 53.
Barrot M . 2002 CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc. Natl Acad. Sci. USA 99 , 11435–11440. (doi:10.1073/pnas.172091899) Crossref, PubMed, Web of Science, Google Scholar - 54.
Bradbury JW, Vehrencamp SL . 1998 Principles of animal communication. Sunderland, MA: Sinauer Associates. Google Scholar - 55.
Doupe AJ, Kuhl PK . 1999 Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22 , 567–631. (doi:10.1146/annurev.neuro.22.1.567) Crossref, PubMed, Web of Science, Google Scholar - 56.
Fischer J, Hammerschmidt K . 2011 Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication. Genes Brain Behav. 10 , 17–27. (doi:10.1111/j.1601-183X.2010.00610.x) Crossref, PubMed, Web of Science, Google Scholar - 57.
Sales G, Pye D . 1974 Ultrasonic communication by animals. Dordrecht, The Netherlands: Halsted Press. (doi:10.1007/978-94-011-6901-1) Crossref, Google Scholar - 58.
Bradbury JW, Vehrencamp SL . 2011 Principles of animal communication, 2nd edn. Sunderland, MA: Sinauer Associates. Google Scholar - 59.
Park SM, Ko SY, Frankland PW, Josselyn SA . 2023 The data for Comparing behaviours induced by natural memory retrieval and optogenetic reactivation of an engram ensemble in mice. Figshare dataset (doi:10.6084/m9.figshare.24539413) Google Scholar