Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

    Dolphins have been observed to blow bubble nets when hunting prey. Such bubble nets would confound the best man-made sonar because the strong scattering by the bubbles generates ‘clutter’ in the sonar image, which cannot be distinguished from the true target. The engineering specification of dolphin sonar is not superior to the best man-made sonar. A logical deduction from this is that, in blowing bubble nets, either dolphins are ‘blinding’ their echolocation sense when hunting or they have a facility absent in man-made sonar. Here we use nonlinear mathematical functions to process the echoes of dolphin-like pulses from targets immersed in bubble clouds. Dolphins emit sequences of clicks, and, within such a sequence, the amplitude of the clicks varies. Here such variation in amplitude between clicks is exploited to enhance sonar performance. While standard sonar processing is not able to distinguish the targets from the bubble clutter, this nonlinear processing can. Although this does not conclusively prove that dolphins do use such nonlinear processing, it demonstrates that humans can detect and classify targets in bubbly water using dolphin-like sonar pulses, raising intriguing possibilities for dolphin sonar when they make bubble nets.

    References

    • Au W. W. L.. 1993 The sonar of dolphins. New York, NY: Springer. CrossrefGoogle Scholar
    • Au W. W. L.. 2004 The dolphin sonar: excellent capabilities in spite of some mediocre properties. High-frequency ocean acoustics (eds , Porter M. B., Siderius M.& Kuperman W.), pp. 247–259. Melville, NY: American Institute of Physics.doi:10.1063/1.1843019 (doi:10.1063/1.1843019). Google Scholar
    • Au W. W. L.& Martin S. W.. 2012 Why dolphin biosonar performs so well in-spite of mediocre ‘equipment’. IET Radar Sonar Navig. 6, 566–575.doi:10.1049/iet-rsn.2011.0194 (doi:10.1049/iet-rsn.2011.0194). Crossref, Web of ScienceGoogle Scholar
    • Au W. W. L.& Nachtigall P. E.. 1997 Acoustics of echolocating dolphins and small whales. Mar. Freshw. Behav. Physiol. 29, 127–162.doi:10.1080/10236249709379004 (doi:10.1080/10236249709379004). Crossref, Web of ScienceGoogle Scholar
    • Au W. W. L., Benoit-Bird K. J.& Kastelein R. A.. 2007 Modelling the detection range of fish by echolocating bottlenose dolphins and harbour porpoises. J. Acoust. Soc. Am. 121, 3954–3962.doi:10.1121/1.2734487 (doi:10.1121/1.2734487). Crossref, PubMed, Web of ScienceGoogle Scholar
    • Burdic W. S.. 1984 Underwater acoustic system analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc. Prentice-Hall Signal Processing series. Google Scholar
    • Capus C., Pailhas Y., Brown K.& Lane D. M.. 2007 Bio-inspired wideband sonar signals based on observations of the bottlenose dolphin (Tursiops truncatus). J. Acoust. Soc. Am. 121, 594–604.doi:10.1121/1.2382344 (doi:10.1121/1.2382344). Crossref, PubMed, Web of ScienceGoogle Scholar
    • Chua G. H., White P. R.& Leighton T. G.. 2012 Use of clicks resembling those of the Atlantic bottlenose dolphin (Tursiops truncatus) to improve target discrimination in bubbly water with biased pulse summation sonar. IET Radar Sonar Navig. 6, 510–515.doi:10.1049/iet-rsn.2011.0199 (doi:10.1049/iet-rsn.2011.0199). Crossref, Web of ScienceGoogle Scholar
    • Clarke J. W. L.& Leighton T. G.. 2000 A method for estimating time-dependent acoustic cross-sections of bubbles and bubble clouds prior to the steady state. J. Acoust. Soc. Am. 107, 1922–1929.doi:10.1121/1.428474 (doi:10.1121/1.428474). Crossref, PubMed, Web of ScienceGoogle Scholar
    • Clift R., Grace J. R.& Weber M. E.. 1978 Bubbles, drops and particles. San Diego, CA: Academic Press. Google Scholar
    • Commander K. W.& Prosperetti A.. 1989 Linear pressure waves in bubbly liquid: comparison between theory and experiments. J. Acoust. Soc. Am. 85, 732–746.doi:10.1121/1.397599 (doi:10.1121/1.397599). Crossref, Web of ScienceGoogle Scholar
    • Doust P. E.& Dix J. F.. 2001 The impact of improved transducer matching and equalisation technique on the accuracy and validity of underwater acoustic measurements. ‘Acoustical Oceanography’, Proc. Institute of Acoustics, Southampton Oceanography Centre, Southampton, UK, 9–12 April 2001, vol. 23, Part 2 (eds , Leighton T. G., Heald G. J., Griffiths H.& Griffiths G.), pp. 100–109. Bath, UK: Bath University Press. Google Scholar
    • Finfer D. C., White P. R., Chua G. H.& Leighton T. G.. 2012 Review of the occurrence of multiple pulse echolocation clicks in recordings from small odontocetes. IET Radar Sonar Navig. 6, 545–555.doi:10.1049/iet-rsn.2011.0348 (doi:10.1049/iet-rsn.2011.0348). Crossref, Web of ScienceGoogle Scholar
    • Francois R. E.& Garrison G. R.. 1982 a Sound absorption based on ocean measurements. Part I. Pure water and magnesium sulfate contributions. J. Acoust. Soc. Am. 72, 896–907.doi:10.1121/1.388170 (doi:10.1121/1.388170). Crossref, Web of ScienceGoogle Scholar
    • Francois R. E.& Garrison G. R.. 1982 b Sound absorption based on ocean measurements. Part II. Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 72, 1879–1890.doi:10.1121/1.388673 (doi:10.1121/1.388673). Crossref, Web of ScienceGoogle Scholar
    • Herzing D. L.& Santos M. E.. 2004 Functional aspects of echolocation in dolphins. Advances in the study of echolocation in bats and dolphins (eds , Thomas J. A., Moss C. F.& Vater M.) pp. 386–393. Berlin, Germany: Springer. Google Scholar
    • Houser D. S., Martin S. W., Bauer E. J., Phillips M., Herrin T., Cross M., Vidal A.& Moore P. W.. 2005 Echolocation characteristics of free-swimming bottlenose dolphins during object detection and identification. J. Acoust. Soc. Am. 117, 2308–2317.doi:10.1121/1.1867912 (doi:10.1121/1.1867912). Crossref, PubMed, Web of ScienceGoogle Scholar
    • Leighton T. G.. 2004 From seas to surgeries, from babbling brooks to baby scans: the acoustics of gas bubbles in liquids. Int. J. Mod. Phys. B 18, 3267–314.doi:10.1142/S0217979204026494 (doi:10.1142/S0217979204026494). Crossref, Web of ScienceGoogle Scholar
    • Leighton T. G., Meers S. D.& White P. R.. 2004 Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics. Proc. R. Soc. Lond. A 460, 2521–2550.doi:10.1098/rspa.2004.1298 (doi:10.1098/rspa.2004.1298). Google Scholar
    • Leighton T. G., Finfer D. C., White P. R., Chua G. H.& Dix J. K.. 2010 Clutter suppression and classification using twin inverted pulse sonar (TWIPS). Proc. R. Soc. A 466, 3453–3478.doi:10.1098/rspa.2010.0154 (doi:10.1098/rspa.2010.0154). Google Scholar
    • Leighton T. G., Finfer D. C., Chua G. H., White P. R.& Dix J. K.. 2011 Clutter suppression and classification using twin inverted pulse sonar in ship wakes. J. Acoust. Soc. Am. 130, 3431–3437.doi:10.1121/1.3626131 (doi:10.1121/1.3626131). Crossref, PubMed, Web of ScienceGoogle Scholar