Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

    Recent research on submarine mass failures (SMFs) shows that they are a source of hazardous tsunamis, with the tsunami magnitude mainly dependent on water depth of failure, SMF volume and failure mechanism, cohesive slump or fragmental landslide. A major control on the mechanism of SMFs is the sediment type, together with its post-depositional alteration. The type of sediment, fine- or coarse-grained, its rate of deposition together with post-depositional processes may all be influenced by climate. Post-depositional processes, termed sediment ‘preconditioning’, are known to promote instability and failure. Climate may also control the triggering of SMFs, for example through earthquake loading or cyclic loading from storm waves or tides. Instantaneous triggering by other mechanisms such as fluid overpressuring and hydrate instability is controversial, but is here considered unlikely. However, these mechanisms are known to promote sediment instability. SMFs occur in numerous environments, including the open continental shelf, submarine canyon/fan systems, fjords, active river deltas and convergent margins. In all these environments there is a latitudinal variation in the scale of SMFs. The database is limited, but the greatest climate influence appears to be in high latitudes where glacial/interglacial cyclicity has considerable control on sedimentation, preconditioning and triggering. Consideration of the different types of SMFs in the context of their climate controls provides additional insight into their potential hazard in sourcing tsunamis. For example, in the Atlantic, where SMFs are common, the tsunami hazard under the present-day climate may not be as great as their common occurrence suggests.

    References

    • Antobreh A. A.& Krastel S.. 2006 Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania:a newly discovered canyon preserved-off a major arid climatic region. Mar. Petrol. Geol. 23, 37-59 (doi:10.1016/j.marpetgeo.2005.06.003). Crossref, Web of ScienceGoogle Scholar
    • Ashabranner L. B., Tripsanas E. K.& Shipp R. C.. 2009 Multi-direction flow in a mass-transport deposit, Santos Basin, Offshore Brazil. Submarine mass movements and their consequences , Mosher D. C., Shipp R. C., Moscardilli L., Chaytor J. D., Baxter C. D. P., Lee H. J.& Urgeles R. 247-255 Berlin, Germany Springer. Google Scholar
    • Bea R. G., Wright S. G., Sicar P.& Niedoroda A. W.. 1983 Wave-induced slides in South Pass Block 70, Mississippi delta. J. Geotech. Eng. 109, 619-644 (doi:10.1061/(ASCE)0733-9410(1983)109:4(619)). Crossref, Web of ScienceGoogle Scholar
    • Billi A., Funiciello R., Minelli L., Faccenna C., Neri G., Orecchio B.& Presti D.. 2008 On the cause of the 1908 Messina tsunami, southern Italy. Geophys. Res. Lett. 35, L06301 (doi:10.1029/2008GL033251). Crossref, Web of ScienceGoogle Scholar
    • Biscontin G., Pestana J. M.& Nadim F.. 2004 Seismic triggering of submarine slides in soft cohesive soil deposits. Mar. Geol. 203, 341-354 (doi:10.1016/S0025-3227(03)00314-1). Crossref, Web of ScienceGoogle Scholar
    • Bohannon R. G.& Gardner J. V.. 2004 Submarine landslides of San Pedro Sea Valley, southwest Long Beach, California. Mar. Geol. 203, 261-268 (doi:10.1016/S0025-3227(03)00309-8). Crossref, Web of ScienceGoogle Scholar
    • Bondevik S., Mangerud J., Dawson S., Dawson A.& Lohne Ø.. 2005 Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quat. Sci. Rev. 24, 1757-1775 (doi:10.1016/j.quascirev.2004.10.018). Crossref, Web of ScienceGoogle Scholar
    • Bryn P., Berg K., Forsberg C. F., Solheim A.& Lien R.. 2005 Explaining the Storegga Slide. Mar. Petrol. Geol. 22, 11-19 (doi:10.1016/j.marpetgeo.2004.12.003). Crossref, Web of ScienceGoogle Scholar
    • Bugge T.. 1983 Submarine slides on the Norwegian continental margin, with special emphasis on the Storegga area IKU Publication 110 Trondheim, Norway Continental Shelf Institute. Google Scholar
    • Cashman K. V.& Popenoe P.. 1985 Slumping and shallow faulting related to the presence of salt on the continental slope and rise off North Carolina. Mar. Petrol. Geol. 2, 260-271 (doi:10.1016/0264-8172(85)90016-9). CrossrefGoogle Scholar
    • Chaytor J. D., Twichell D. C., ten Brink U. S., Buczkowski B. J.& Andrews B. D.. 2007 Revisiting submarine mass movements along the US Atlantic continental margin:implications for tsunami hazard. Submarine mass movements and their consequences Berlin, Germany Springer. Google Scholar
    • Coulter H. W.& Migliaccio R. R.. 1966 Effects of the earthquake of March 27, 1964 at Valdez, Alaska USGS Professional Paper 542-C Reston, VA US Geological Survey. Google Scholar
    • Dan G., Sultan N.& Savoye B.. 2007 The 1979 Nice harbour catastrophe revisited:trigger mechanism inferred from geotechnical measurements and numerical modelling. Mar. Geol. 245, 40-64 (doi:10.1016/j.margeo.2007.06.011). Crossref, Web of ScienceGoogle Scholar
    • Dingle R. V.. 1977 Anatomy of a large submarine slump on sheared continentgal margin (southeast Africa). J. Geol. Soc. Lond. 134, 293-310 (doi:10.1144/gsjgs.134.3.0293). CrossrefGoogle Scholar
    • Dobson M. R., O’Leary D.& Veart M.. 1998 Sediment delivery to the Gulf of Alaska:source mechanisms along a glaciated transform margin. Geol. Soc. Lond. Special Publ. 129, 43-66. CrossrefGoogle Scholar
    • Dugan B.& Stigall J.. 2009 Origin of overpressure and slope failure in the Ursa Region, Northern Gulf of Mexico. Submarine mass movements and their consequences , Mosher D. C., et al. 167-178 Berlin, Germany Springer. Google Scholar
    • Embley R. W.& Jacobi R. D.. 1986 Mass wasting in the western North Atlantic. The Western North Atlantic region:geology of North America , Vogt P. R.& Tucholke B. E. 479-490 Boulder, CO Geological Society of America. Google Scholar
    • Fisher M. A., Normark W. R., Greene H. G., Lee H. J.& Sliter R. W.. 2005 Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel, Southern California. Mar. Geol. 224, 1-22 (doi:10.1016/j.margeo.2005.07.012). Crossref, Web of ScienceGoogle Scholar
    • Fritz H. M., et al. 2007 Extreme runup from the 17 July 2006 Java tsunami. Geophys. Res. Lett. 34, L12602 (doi:10.1029/2007GL029404). Crossref, Web of ScienceGoogle Scholar
    • Fryer G. J., Watts P.& Pratson L. F.. 2004 Source of the great tsunami of 1 April 1946:a landslide in the upper Aleutian forearc. Mar. Geol. 203, 201-218 (doi:10.1016/S0025-3227(03)00305-0). Crossref, Web of ScienceGoogle Scholar
    • Gee M. J. R., Masson D. G., Watts A. B.& Allen P. A.. 1999 The Saharan debris flow:an insight into the mechanics of long runout submarine debris flows. Sedimentology 46, 317-335 (doi:10.1046/j.1365-3091.1999.00215.x). Crossref, Web of ScienceGoogle Scholar
    • Geist E. L., Lynett P. J.& Chaytor J. D.. 2009 Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar. Geol. 264, 41-52 (doi:10.1016/j.margeo.2008.09.005). Crossref, Web of ScienceGoogle Scholar
    • Goldfinger C., Kulm L. D., McNeill L. C.& Watts P.. 2000 Super-scale failure of the southern Oregon Cascadia margin. Landslides and tsunamis 157 , Keating B., Waythomas C.& Dawson A. 1189-1226 Pure and Applied Geophysics Basle, Switzerland Birkhäuser. Google Scholar
    • Greene H. G., Murai L. Y., Watts P., Maher N. A., Fisher M. A., Paull C. E.& Eichhubl P.. 2005 Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Nat. Hazards Earth System Sci. 6, 63-88. CrossrefGoogle Scholar
    • Grozic J. L. H.. 2009 Interplay between gas hydrates and submarine slope failure. Submarine mass movements and their consequences , Mosher D. C., Shipp R. C., Moscardilli L., Chaytor J. D., Baxter C. D. P., Lee H. J.& Urgeles R. 11-30 Berlin, Germany Springer Science and Business Media. Google Scholar
    • Hampton M. A., Lemke R. W.& Coulter H. W.. 1993 Submarine landslides that had a significant impact on man and his activities:Seward and Valdez, Alaska. Submarine landslides:selected studies in the US EEZ 2002 , Schwab W. C., Lee H. J.& Twichell D. C. 123-142 USGS Bulletin Reston, VA US Geological Survey. Google Scholar
    • Hampton M. A., Lee H. J.& Locat J.. 1996 Submarine landslides. Rev. Geophys. 34, 33-59 (doi:10.1029/95RG03287). Crossref, Web of ScienceGoogle Scholar
    • Heezen B. C., Ericsson D. B.& Ewing M.. 1954 Further evidence of a turbidity current following the 1929 Grand Banks earthquake. Deep Sea Res. 1, 193-202 (doi:10.1016/0146-6313(54)90001-5). CrossrefGoogle Scholar
    • Henrich R., Hanebuth T. J. J., Krastel S., Neubert N.& Wynn R. B.. 2008 Architecture and sediment dynamics of the Mauritania slide complex. Mar. Petrol. Geol. 25, 17-33. Crossref, Web of ScienceGoogle Scholar
    • Henrich R., Hanebuth T. J. J., Cherubini Y., Kraste S., Pierau R.& Zühlsdorff C.. 2009 Climate-induced turbidity current activity in NW-African canyon systems. Submarine mass movements and their consequences , Mosher D. C., Shipp R. C., Moscardilli L., Chaytor J. D., Baxter C. D. P., Lee H. J.& Urgeles R. Berlin, Germany Springer. Google Scholar
    • Hjelstuen B. O., Sejrup H. P., Haflidason H., Nygård A., Ceramicola S.& Bryn P.. 2005 Late Cenozoic glacial history and evolution of the Storegga Slide area and adjacent slide flanks regions, Norwegian continental margin. Mar. Petrol. Geol. 22, 57-69 (doi:10.1016/j.marpetgeo.2004.10.002). Crossref, Web of ScienceGoogle Scholar
    • Hornbach M. J., Lavier L. L.& Ruppel C. D.. 2007 Triggering mechanism and tsunamogenic potential of the Cape fear slide complex, US Atlantic margin. Geochem. Geophys. Geosyst. 8, Q12008 (doi:10.1029/2007GC001722). Crossref, Web of ScienceGoogle Scholar
    • Hühnerbach V.& Masson D. G. Partners of the COSTA-Project. 2004 Landslides in the north Atlantic and its adjacent seas:an analysis of their morphology, setting and behaviour. Mar. Geol. 213, 343-362 (doi:10.1016/j.margeo.2004.10.013). Crossref, Web of ScienceGoogle Scholar
    • Imamura F., Gica E., Takahashi T.& Shuto N.. 1995 Numerical simulation of the 1992 Flores tsunami:interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island. Pure Appl. Geophys. 144, 555-568 (doi:10.1007/BF00874383). Crossref, Web of ScienceGoogle Scholar
    • Jenner K. A., Piper D. J. W., Campbell D. C.& Mosher D. C.. 2007 Lithofacies and origin of late Quaternary mass transport deposits in submarine canyons, central Scotian Slope, Canada. Sedimentology 54, 19-38 (doi:10.1111/j.1365-3091.2006.00819.x). Crossref, Web of ScienceGoogle Scholar
    • Jiang L.& LeBlond P. H.. 1994 Three dimensional modelling of tsunami generation due to submarine mudslide. J. Phys. Ocean 24, 559-573 (doi:10.1175/1520-0485(1994)024<0559:TDMOTG>2.0.CO;2). Crossref, Web of ScienceGoogle Scholar
    • Johnson R. W.. 1987 Large-scale volcanic cone collapse:the 1888 slope failure of Ritter Volcano, and other examples from Papua New Guinea. Bull. Volcanol. 49, 669-679 (doi:10.1007/BF01080358). CrossrefGoogle Scholar
    • Kawamura K., Kanamatsu T., Kinoshita M., Saito S., Shibata T., Fujino K., Misawa A.& Burmeister K. C.. 2009 Redistribution of sediments by submarine landslides on the Eastern Nankai Accretionary Prism. Submarine mass movements and their consequences 28 , Mosher D. C., Shipp R. C., Moscardilli L., Chaytor J. D., Baxter C. D. P., Lee H. J.& Urgeles R. Berlin, Germany Springer. Google Scholar
    • Kvalstad T. J., Andresen L., Forsberg C. F., Berg K., Bryn P.& Wangen M.. 2005 The Storegga Slide:evaluation of triggering sources and slide mechanics. Mar. Petrol. Geol. 22, 245-256 (doi:10.1016/j.marpetgeo.2004.10.019). Crossref, Web of ScienceGoogle Scholar
    • Laberg J. S., Vorren T. O., Dowdeswell J. A., Kenyon N. H.& Taylor J.. 2000 The Andøya Slide and the Andøya Canyon, north-eastern Norwegian-Greenland Sea. Mar. Geol. 162, 259-275 (doi:10.1016/S0025-3227(99)00087-0). Crossref, Web of ScienceGoogle Scholar
    • Laberg J. S., Vorren T. O., Mienert J., Haflidason H., Bryn P.& Lien R.. 2003 Preconditions leading to the Holocene Trænadjupet slide offshore Norway. Submarine mass movements and their consequences , Locat J.& Mienert J. 247-254 Dordrecht, The Netherlands Kluwer Academic Publishers. Google Scholar
    • Lastras G., Canals M., Urgeles R., de Batist M., Calafat A. M.& Casamor J. L.. 2004 Characterisation of the recent BIG’95 debris flow deposit on the Ebro margin, Western Mediterranean Sea, after a variety of seismic reflection data. Mar. Geol. 213, 235-255 (doi:10.1016/j.margeo.2004.10.008). Crossref, Web of ScienceGoogle Scholar
    • LeBlond P. H.& Jones A.. 1995 Underwater landslides ineffective at tsunami generation. Sci. Tsunami Hazards 13, 25-26. Google Scholar
    • Lee H. J.. 1989 Undersea landslides:extent and significance in the Pacific Ocean. Landslides, extent and economic significance , Brabb E. E.& Harrod B. L. 367-380 Rotterdam, The Netherlands Balkema. Google Scholar
    • Lee H. J.. 2005 Undersea landslides:extent and significance in the Pacific Ocean, an update. Nat. Hazards Earth Syst. Sci. 5, 877-892. CrossrefGoogle Scholar
    • Lee H. J.. 2009 Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar. Geol. 264, 53-64 (doi:10.1016/j.margeo.2008.09.009). Crossref, Web of ScienceGoogle Scholar
    • Lee H. J., Kayen R. E., Gardner J. V.& Locat J.. 2003 Characteristics of several tsunamigenics submarine landslides. Submarine mass movements and their consequences , Locat J.& Mienert J. 357-366 Dordrecht, The Netherlands Kluwer. Google Scholar
    • Lemke R. W.. 1967 Effects of the earthquake of 27 March 1964, at Seward, Alaska USGS Professional Paper 542-E. Reston, VA US Geological Survey. Google Scholar
    • Liggins F., Betts R. A.& McGuire B.. 2010 Projected future climate changes in the context of geological and geomorphological hazards. Phil. Trans. R. Soc. A 368, 2347-2367 (doi:10.1098/rsta.2010.0072). Link, Web of ScienceGoogle Scholar
    • Locat J., Locat P., Lee H. J.& Imran J.. 2004 Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis. Mar. Geol. 20, 269-280 (doi:10.1016/S0025-3227(03)00310-4). Crossref, Web of ScienceGoogle Scholar
    • Locat J., Lee H., ten Brink U. S., Twichell D., Geist E.& Sansoucy M.. 2009 Geomorphology, stability and mobility of the Currituck slide. Mar. Geol. 264, 28-40 (doi:10.1016/j.margeo.2008.12.005). Crossref, Web of ScienceGoogle Scholar
    • López-Venegas A. M., ten Brink U. S.& Geist E. L.. 2008 Submarine landslide as the source for the October 11, 1918 Mona Passage tsunami:observations and modeling. Mar. Geol. 254, 35-46 (doi:10.1016/j.margeo.2008.05.001). Crossref, Web of ScienceGoogle Scholar
    • Maslin M., Mikkelsen N., Vilela C.& Haq B.. 1998 Sea-level- and gas-hydrate-controlled catastrophic sediment failures of the Amazon Fan. Geology 26, 1107-1110 (doi:10.1130/0091-7613(1998)026<1107:SLAGHC>2.3.CO;2). Crossref, Web of ScienceGoogle Scholar
    • Maslin M., Owen M., Betts R., Day S., Dunkley Jones T.& Ridgwell A.. 2010 Gas hydrates:past and future geohazard? Phil. Trans. R. Soc. A 368, 2369-2393 (doi:10.1098/rsta.2010.0065). Link, Web of ScienceGoogle Scholar
    • Masson D. G., Wynn R. B.& Talling P. J.. 2009 Large landslides on passive continental margins:processes, hypotheses and outstanding questions. Submarine mass movements and their consequences , Mosher D. C., Shipp R. C., Moscardilli L., Chaytor J. D., Baxter C. D. P., Lee H. J.& Urgeles R. Berlin, Germany Springer Science. Google Scholar
    • McAdoo B., Pratson G.& Orange L. F.. 2000 Submarine landslide geomorphology, US Continental slope. Mar. Geol. 169, 103-136 (doi:10.1016/S0025-3227(00)00050-5). Crossref, Web of ScienceGoogle Scholar
    • McAdoo B. G., Capone M. K.& Minder J.. 2004 Seafloor geomorphology of convergent margins:implications for Cascadia seismic hazard. Tectonics 23, TC6008 (doi:10.1029/2003TC001570). Crossref, Web of ScienceGoogle Scholar
    • Moore J. G., Normark W. R.& Holcomb R. T.. 1994 Giant Hawaiian underwater landslides. Science 264, 46-47 (doi:10.1126/science.264.5155.46). Crossref, PubMed, Web of ScienceGoogle Scholar
    • Mosher D. C.& Piper D. J. W.. 2007 Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. Submarine mass movements and their consequences , Lykousis V., Sakellariou D.& Locat J. 77-88 Berlin, Germany Springer. CrossrefGoogle Scholar
    • Normark W. R., McGann M.& Sliter R.. 2004 Age of Palos Verdes submarine debris avalanche, southern California. Mar. Geol. 203, 247-259 (doi:10.1016/S0025-3227(03)00308-6). Crossref, Web of ScienceGoogle Scholar
    • Peltier W. R.. 2002 Global glacial isostatic adjustment:palaeogeodetic and space-geodetic tests of the ICE-4G (VM2) model. J. Quat. Sci. 17, 491-510 (doi:10.1002/jqs.713). Crossref, Web of ScienceGoogle Scholar
    • Piper D. J. W.& Asku A. E.. 1987 The source and origin of the 1929 Grand Banks turbidity current inferred from sediment budgets. Geo Mar. Lett. 7, 177-182 (doi:10.1007/BF02242769). Crossref, Web of ScienceGoogle Scholar
    • Piper D. J. W.& McCall C.. 2003 A synthesis of the distribution of submarine mass movements on the eastern Canadian Margin. Submarine mass movements and their consequences , Locat J.& Mienert J. 291-298 Dordrecht, The Netherlands Kluwer Academic Publishers. Google Scholar
    • Piper D. J. W., Pirmez C., Manley P. L., Long D., Flood R. D., Normark W. R.& Showers W.. 1997 Mass transport deposits of the Amazon Fan. Proceedings of the ocean drilling program, scientific results 155 , Flood R. D., Piper D. J. W., Klaus A.& Peterson L. C. 109-146 College Station, TX Texas Ocean Drilling Program. Google Scholar
    • Plafker G., Kachadoorian R., Eckel E. B.& Mayo L. R.. 1969 Effects of the earthquake of March 27, 1964 on various communities USGS Professional Paper 542-G Reston, VA US Geological Survey. Google Scholar
    • Prior D. B.& Coleman J. M.. 1982 Active slides and flows on underconsolidated marine sediments on the slopes of the Mississippi delta. Marine slides and other mass movements , Saxov S.& Nieuwenhuis J. K. 21-49 New York, NY Plenum. CrossrefGoogle Scholar
    • Prior D. B., Bornhold B. D., Coleman J. M.& Bryant W. R.. 1982 a Morphology of a submarine slide, Kitimat Arm, British Columbia. Geology 10, 588-592 (doi:10.1130/0091-7613(1982)10<588:MOASSK>2.0.CO;2). Crossref, Web of ScienceGoogle Scholar
    • Prior D. B., Coleman J. M.& Bornhold B. D.. 1982 b Results of a known sea-floor instability event. Geomar. Lett. 117–122, 2. Google Scholar
    • Prior D. B., Bornhold B. D.& Johns M. W.. 1986 a Active sand transport along a fjord-bottom channel, Bute Inlet, British Columbia. Geology 14, 581-584 (doi:10.1130/0091-7613(1986)14<581:ASTAAF>2.0.CO;2). Crossref, Web of ScienceGoogle Scholar
    • Prior D. B., Doyle E. H.& Neurauter T.. 1986 b The Currituck Slide, mid-Atlantic continental slope—revisited. Mar. Geol. 73, 25-45 (doi:10.1016/0025-3227(86)90109-X). Crossref, Web of ScienceGoogle Scholar
    • Rahiman T. I. H., Pettinga J. R.& Watts P.. 2007 The source mechanism and numerical modelling of the 1953 Suva tsunami, Fiji. Mar. Geol. 237, 55-70 (doi:10.1016/j.margeo.2006.10.036). Crossref, Web of ScienceGoogle Scholar
    • Rajendran C. P., Ramanamurthy M. V., Reddy N. T.& Rajendran K.. 2008 Hazard implications of the late arrival of the 1945 Makran tsunami. Curr. Sci. 95, 1739-1743. Web of ScienceGoogle Scholar
    • Satake K.. 2007 Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea. Earth Planets Space 59, 381-390. Crossref, Web of ScienceGoogle Scholar
    • Satake K.& Kato Y.. 2001 The 1741 Oshima-Oshima eruption:extent and volume of submarine debris avalanche. Geophys. Res. Lett. 28, 427-430 (doi:10.1029/2000GL012175). Crossref, Web of ScienceGoogle Scholar
    • Schwab W. C.& Lee H. J.. 1988 Causes of two slope-failure types in continental-shelf sediment, northeastern Gulf of Alaska. J. Sediment. Res. 58, 1-11. Google Scholar
    • Siebert L., Glicken H.& Ui T.. 1987 Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull.Volcanol. 49, 435-459 (doi:10.1007/BF01046635). CrossrefGoogle Scholar
    • Solheim A., Bryn P., Sejrup H. P., Mienert J.& Berg K.. 2005 Ormen Lange—an integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary. Mar. Petrol. Geol. 22, 1-9 (doi:10.1016/j.marpetgeo.2004.10.001). Crossref, Web of ScienceGoogle Scholar
    • Sowers T.. 2006 Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science 311, 838-840 (doi:10.1126/science.1121235). Crossref, PubMed, Web of ScienceGoogle Scholar
    • Syvitski J. P. M., Burrell D. C.& Skei J. M.. 1986 Fjords:processes and products New York, NY Springer. Google Scholar
    • Tanioka Y.& Seno T.. 2001 Sediment Effect on Tsunami Generation of the 1896 Sanriku Tsunami Earthquake. Geophys. Res. Lett. 28, 3389-3392 (doi:10.1029/2001GL013149). Crossref, Web of ScienceGoogle Scholar
    • Tappin D. R.. 2009 Mass transport events and their tsunami hazard. Submarine mass movements and their consequences , Mosher D. C., Shipp R. C., Moscardilli L., Chaytor J. D., Baxter C. D. P., Lee H. J.& Urgeles R. 667-684 Berlin, Germany Springer Science and Business Media. Google Scholar
    • Tappin D. R., et al. 1999 Sediment slump likely caused 1998 Papua New Guinea Tsunami. EOS Trans. AGU 80, 329 (doi:10.1029/99EO00241). CrossrefGoogle Scholar
    • Tappin D. R., Watts P., McMurtry G. M., Lafoy Y.& Matsumoto T.. 2001 The Sissano Papua New Guinea tsunami of July 1998—offshore evidence on the source mechanism. Mar. Geol. 175, 1-23 (doi:10.1016/S0025-3227(01)00131-1). Crossref, Web of ScienceGoogle Scholar
    • Tappin D. R., McNeil L., Henstock T.& Mosher D.. 2007 Mass wasting processes—offshore Sumatra. Submarine mass movements and their consequences Berlin, Germany Springer. Google Scholar
    • Tappin D. R., Watts P.& Grilli S. T.. 2008 The Papua New Guinea tsunami of 17 July 1998:anatomy of a catastrophic event. Nat. Hazards Earth Syst. Sci. 8, 243-266. CrossrefGoogle Scholar
    • Twichell D. C., Chaytor J. D., ten Brink U. S.& Buczkowski B.. 2009 Morphology of late Quaternary submarine landslides along the US Atlantic continental margin. Mar. Geol. 264, 4-15 (doi:10.1016/j.margeo.2009.01.009). Crossref, Web of ScienceGoogle Scholar
    • Urgeles R., Canals M., Baraza J., Alonso B.& Masson D.. 1997 The most recent megalandslides of the Canary Islands:el Golfo debris avalanche and Canary debris flow, west el Hierro Island. J. Geophys. Res. 102, 20305-20323 (doi:10.1029/97JB00649). Crossref, Web of ScienceGoogle Scholar
    • Ward S. N.& Day S.. 2003 Ritter Island volcano—lateral collapse and the tsunami of 1888. Geophys. J. Int. 154, 891-902 (doi:10.1046/j.1365-246X.2003.02016.x). Crossref, Web of ScienceGoogle Scholar
    • Weaver P. P. E., Wynn R. B., Kenyon N. H.& Evans J.. 2000 Continental margin sedimentation, with special reference to the north-east Atlantic margin. Sedimentology 47, 239-225 (doi:10.1046/j.1365-3091.2000.0470s1239.x). Crossref, Web of ScienceGoogle Scholar
    • Wynn R. B., Weaver P. P. E., Masson D. G.& Stow D. A. V.. 2002 Turbidite depositional architecture across three inter-connected deep-water basins on the Northwest African Margin. Sedimentology 49, 669-695 (doi:10.1046/j.1365-3091.2002.00471.x). Crossref, Web of ScienceGoogle Scholar