Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Footnotes
References
- 1
Seidler R. D., Bernard J. A., Burutolu T. B., Fling B. W., Gordon M. T., Gwin J. T., Kwak Y.& Lipps D. B. . 2010 Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34, 721–733.doi:10.1016/j.neubiorev.2009.10.005 (doi:10.1016/j.neubiorev.2009.10.005). Crossref, PubMed, Web of Science, Google Scholar - 2
Baltes P. B.& Lindenberger U. . 1997 Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol. Aging 12, 12–21.doi:10.1037/0882-7974.12.1.12 (doi:10.1037/0882-7974.12.1.12). Crossref, PubMed, Web of Science, Google Scholar - 3
Glisky E. L. . 2007 Changes in cognitive function in human aging. Brain aging models, methods, and mechanisms (ed.& Riddle D. R. ). New York, NY: CRC Press. Google Scholar - 4
Rapp P. R.& Amaral D. G. . 1989 Evidence for task-dependent memory dysfunction in the aged monkey. J. Neurosci. 9, 3568–3576. Crossref, PubMed, Web of Science, Google Scholar - 5
Bilkei-Gorzo A., 2012 Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1(−/−) mice. Neurobiol. Aging 33, e11–e22.doi:10.1016/j.neurobiolaging.2010.07.009 (doi:10.1016/j.neurobiolaging.2010.07.009). Crossref, Web of Science, Google Scholar - 6
Yu L., Tucci V., Kishi S.& Zhdanova I. V. . 2006 Cognitive aging in zebrafish. PLoS ONE 1, e14.doi:10.1371/journal.pone.0000014 (doi:10.1371/journal.pone.0000014). Crossref, PubMed, Web of Science, Google Scholar - 7
Eyler L. T., Sherzai A., Kaup A. R.& Jeste D. V. . 2011 A review of functional brain imaging correlates of successful cognitive aging. Biol. Psychiatry 70, 115–122.doi:10.1016/j.biopsych.2010.12.032 (doi:10.1016/j.biopsych.2010.12.032). Crossref, PubMed, Web of Science, Google Scholar - 8
Double K. L., Reyes S., Werry E. L.& Halliday G. M. . 2010 Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog. Neurobiol. 92, 316–329.doi:10.1016/j.pneurobio.2010.06.001 (doi:10.1016/j.pneurobio.2010.06.001). Crossref, PubMed, Web of Science, Google Scholar - 9
Small S. A., Schobel S. A., Buxton R. B., Witter M. P.& Barnes C. A. . 2011 A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 12, 585–601.doi:10.1038/nrn3085 (doi:10.1038/nrn3085). Crossref, PubMed, Web of Science, Google Scholar - 10
Bano D., Agostini M., Melino G.& Nicotera P. . 2011 Ageing, neuronal connectivity and brain disorders: an unsolved ripple effect. Mol. Neurobiol. 43, 124–130.doi:10.1007/s12035-011-8164-6 (doi:10.1007/s12035-011-8164-6). Crossref, PubMed, Web of Science, Google Scholar - 11
Mattson M. P. . 2007 Calcium and neurodegeneration. Aging Cell 6, 337–350.doi:10.1111/j.1474-9726.2007.00275.x (doi:10.1111/j.1474-9726.2007.00275.x). Crossref, PubMed, Web of Science, Google Scholar - 12
Fjell A. M.& Walhovd K. B. . 2010 Structural brain changes in aging: courses, causes and cognitive consequences. Rev. Neurosci. 21, 187–221.doi:10.1515/REVNEURO.2010.21.3.187 (doi:10.1515/REVNEURO.2010.21.3.187). Crossref, PubMed, Web of Science, Google Scholar - 13
Jernigan T. L.& Gamst A. C. . 2005 Changes in volume with age-consistency and interpretation of observed effects. Neurobiol. Aging 26, 1271–1274; discussion 1275–8.doi:10.1016/j.neurobiolaging.2005.05.016 (doi:10.1016/j.neurobiolaging.2005.05.016). Crossref, PubMed, Web of Science, Google Scholar - 14
Bartzokis G., Sultzer D., Lu P. H., Nuechterlein K. H., Mintz J.& Cummings J. L. . 2004 Heterogeneous age-related breakdown of white matter structural integrity: implications for cortical ‘disconnection’ in aging and Alzheimer's disease. Neurobiol. Aging 25, 843–851.doi:10.1016/j.neurobiolaging.2003.09.005 (doi:10.1016/j.neurobiolaging.2003.09.005). Crossref, PubMed, Web of Science, Google Scholar - 15
Marner L., Nyengaard J. R., Tang Y.& Pakkenberg B. . 2003 Marked loss of myelinated nerve fibers in the human brain with age. J. Comp. Neurol. 462, 144–152.doi:10.1002/cne.10714 (doi:10.1002/cne.10714). Crossref, PubMed, Web of Science, Google Scholar - 16
Salthouse T. A. . 2011 Neuroanatomical substrates of age-related cognitive decline. Psychol. Bull. 137, 753–784.doi:10.1037/a0023262 (doi:10.1037/a0023262). Crossref, PubMed, Web of Science, Google Scholar - 17
Pakkenberg B., Pelvig D., Marner L., Bundgaard M. J., Gundersen H. J., Nyengaard J. R.& Regeur L. . 2003 Aging and the human neocortex. Exp. Gerontol. 38, 95–99.doi:10.1016/S0531-5565(02)00151-1 (doi:10.1016/S0531-5565(02)00151-1). Crossref, PubMed, Web of Science, Google Scholar - 18
Pakkenberg B.& Gundersen H. J. . 1997 Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol. 384, 312–320.doi:10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K (doi:10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K). Crossref, PubMed, Web of Science, Google Scholar - 19
West M. J. . 1993 Regionally specific loss of neurons in the aging human hippocampus. Neurobiol. Aging 14, 287–293.doi:10.1016/0197-4580(93)90113-P (doi:10.1016/0197-4580(93)90113-P). Crossref, PubMed, Web of Science, Google Scholar - 20
Simic G., Bexheti S., Kelovic Z., Kos M., Grbic K., Hof P. R.& Kostovic I. . 2005 Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex. Neuroscience 130, 911–925.doi:10.1016/j.neuroscience.2004.09.040 (doi:10.1016/j.neuroscience.2004.09.040). Crossref, PubMed, Web of Science, Google Scholar - 21
Kordower J. H., Chu Y., Stebbins G. T., DeKosky S. T., Cochran E. J., Bennett D.& Mufson E. J. . 2001 Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann. Neurol. 49, 202–213.doi:10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3 (doi:10.1002/1531-8249(20010201)49:2<202::AID-ANA40>3.0.CO;2-3). Crossref, PubMed, Web of Science, Google Scholar - 22
Couillard-Despres S., Iglseder B.& Aigner L. . 2011 Neurogenesis, cellular plasticity and cognition: the impact of stem cells in the adult and aging brain: a mini-review. Gerontology 57, 559–564.doi:10.1159/000323481 (doi:10.1159/000323481). Crossref, PubMed, Web of Science, Google Scholar - 23
Yassa M. A.& Stark C. E. . 2011 Pattern separation in the hippocampus. Trends Neurosci. 34, 515–525.doi:10.1016/j.tins.2011.06.006 (doi:10.1016/j.tins.2011.06.006). Crossref, PubMed, Web of Science, Google Scholar - 24
Burke S. N.& Barnes C. A. . 2006 Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7, 30–40.doi:10.1038/nrn1809 (doi:10.1038/nrn1809). Crossref, PubMed, Web of Science, Google Scholar - 25
Pannese E. . 2011 Morphological changes in nerve cells during normal aging. Brain Struct. Funct. 216, 85–89.doi:10.1007/s00429-011-0308-y (doi:10.1007/s00429-011-0308-y). Crossref, PubMed, Web of Science, Google Scholar - 26
Flood D. G. . 1993 Critical issues in the analysis of dendritic extent in aging humans, primates, and rodents. Neurobiol. Aging 14, 649–654.doi:10.1016/0197-4580(93)90058-J (doi:10.1016/0197-4580(93)90058-J). Crossref, PubMed, Web of Science, Google Scholar - 27
Grill J. D.& Riddle D. R. . 2002 Age-related and laminar-specific dendritic changes in the medial frontal cortex of the rat. Brain Res. 937, 8–21.doi:10.1016/S0006-8993(02)02457-5 (doi:10.1016/S0006-8993(02)02457-5). Crossref, PubMed, Web of Science, Google Scholar - 28
Ginsberg S. D. . 2007 Expression profile analysis of brain aging. Brain aging models methods, and mechanisms (ed.& Riddle D. R. ), pp. 159–185. Boca Raton, FL: CRC Press. Google Scholar - 29
Lonze B. E.& Ginty D. D. . 2002 Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623.doi:10.1016/S0896-6273(02)00828-0 (doi:10.1016/S0896-6273(02)00828-0). Crossref, PubMed, Web of Science, Google Scholar - 30
Saura C. A.& Valero J. . 2011 The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Rev. Neurosci. 22, 153–169.doi:10.1515/rns.2011.018 (doi:10.1515/rns.2011.018). Crossref, PubMed, Web of Science, Google Scholar - 31
Chen G., Zou X., Watanabe H., van Deursen J. M.& Shen J. . 2010 CREB binding protein is required for both short-term and long-term memory formation. J. Neurosci. 30, 13 066–13 077.doi:10.1523/JNEUROSCI.2378-10.2010 (doi:10.1523/JNEUROSCI.2378-10.2010). Crossref, Web of Science, Google Scholar - 32
Menard C.& Quirion R. . 2012 Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS ONE 7, e28666.doi:10.1371/journal.pone.0028666 (doi:10.1371/journal.pone.0028666). Crossref, PubMed, Web of Science, Google Scholar - 33
Ljungberg M. C., Ali Y. O., Zhu J., Wu C. S., Oka K., Zhai R. G.& Lu H. C. . 2012 CREB-activity and nmnat2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum. Mol. Genet. 21, 251–267.doi:10.1093/hmg/ddr492 (doi:10.1093/hmg/ddr492). Crossref, PubMed, Web of Science, Google Scholar - 34
Ma Q. L., Harris-White M. E., Ubeda O. J., Simmons M., Beech W., Lim G. P., Teter B., Frautschy S. A.& Cole G. M. . 2007 Evidence of Abeta- and transgene-dependent defects in ERK-CREB signaling in Alzheimer's models. J. Neurochem. 103, 1594–1607.doi:10.1111/j.1471-4159.2007.04869.x (doi:10.1111/j.1471-4159.2007.04869.x). Crossref, PubMed, Web of Science, Google Scholar - 35
Tomobe K., Okuma Y.& Nomura Y. . 2007 Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Brain Res. 1141, 214–217.doi:10.1016/j.brainres.2006.08.026 (doi:10.1016/j.brainres.2006.08.026). Crossref, PubMed, Web of Science, Google Scholar - 36
Monti B., Berteotti C.& Contestabile A. . 2005 Dysregulation of memory-related proteins in the hippocampus of aged rats and their relation with cognitive impairment. Hippocampus 15, 1041–1049.doi:10.1002/hipo.20099 (doi:10.1002/hipo.20099). Crossref, PubMed, Web of Science, Google Scholar - 37
Porte Y., Buhot M. C.& Mons N. . 2008 Alteration of CREB phosphorylation and spatial memory deficits in aged 129T2/Sv mice. Neurobiol. Aging 29, 1533–1546.doi:10.1016/j.neurobiolaging.2007.03.023 (doi:10.1016/j.neurobiolaging.2007.03.023). Crossref, PubMed, Web of Science, Google Scholar - 38
Mair W., Morantte I., Rodrigues A. P., Manning G., Montminy M., Shaw R. J.& Dillin A. . 2011 Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470, 404–408.doi:10.1038/nature09706 (doi:10.1038/nature09706). Crossref, PubMed, Web of Science, Google Scholar - 39
Zhang M., Poplawski M., Yen K., Cheng H., Bloss E., Zhu X., Patel H.& Mobbs C. V. . 2009 Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling. PLoS Biol. 7, e1000245.doi:10.1371/journal.pbio.1000245 (doi:10.1371/journal.pbio.1000245). Crossref, PubMed, Web of Science, Google Scholar - 40
Toescu E. C.& Verkhratsky A. . 2004 Ca2+ and mitochondria as substrates for deficits in synaptic plasticity in normal brain ageing. J. Cell Mol. Med. 8, 181–190.doi:10.1111/j.1582-4934.2004.tb00273.x (doi:10.1111/j.1582-4934.2004.tb00273.x). Crossref, PubMed, Web of Science, Google Scholar - 41
Thibault O.& Landfield P. W. . 1996 Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272, 1017–1020.doi:10.1126/science.272.5264.1017 (doi:10.1126/science.272.5264.1017). Crossref, PubMed, Web of Science, Google Scholar - 42
Michaelis M. L., 1996 Decreased plasma membrane calcium transport activity in aging brain. Life Sci. 59, 405–412.doi:10.1016/0024-3205(96)00319-0 (doi:10.1016/0024-3205(96)00319-0). Crossref, PubMed, Web of Science, Google Scholar - 43
Zaidi A., Gao J., Squier T. C.& Michaelis M. L. . 1998 Age-related decrease in brain synaptic membrane Ca2+-ATPase in F344/BNF1 rats. Neurobiol. Aging 19, 487–495.doi:10.1016/S0197-4580(98)00078-5 (doi:10.1016/S0197-4580(98)00078-5). Crossref, PubMed, Web of Science, Google Scholar - 44
Bu J., Sathyendra V., Nagykery N.& Geula C. . 2003 Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. Exp. Neurol. 182, 220–231.doi:10.1016/S0014-4886(03)00094-3 (doi:10.1016/S0014-4886(03)00094-3). Crossref, PubMed, Web of Science, Google Scholar - 45
Toescu E. C., Verkhratsky A.& Landfield P. W. . 2004 Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci. 27, 614–620.doi:10.1016/j.tins.2004.07.010 (doi:10.1016/j.tins.2004.07.010). Crossref, PubMed, Web of Science, Google Scholar - 46
Bishop N. A., Lu T.& Yankner B. A. . 2010 Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535.doi:10.1038/nature08983 (doi:10.1038/nature08983). Crossref, PubMed, Web of Science, Google Scholar - 47
Lu T., Pan Y., Kao S. Y., Li C., Kohane I., Chan J.& Yankner B. A. . 2004 Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891.doi:10.1038/nature02661 (doi:10.1038/nature02661). Crossref, PubMed, Web of Science, Google Scholar - 48
Lee C. K., Weindruch R.& Prolla T. A. . 2000 Gene-expression profile of the ageing brain in mice. Nat. Genet. 25, 294–297.doi:10.1038/77046 (doi:10.1038/77046). Crossref, PubMed, Web of Science, Google Scholar - 49
Zhan M., Yamaza H., Sun Y., Sinclair J., Li H.& Zou S. . 2007 Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. Genome Res. 17, 1236–1243.doi:10.1101/gr.6216607 (doi:10.1101/gr.6216607). Crossref, PubMed, Web of Science, Google Scholar - 50
Kang H. J., 2011 Spatio-temporal transcriptome of the human brain. Nature 478, 483–489.doi:10.1038/nature10523 (doi:10.1038/nature10523). Crossref, PubMed, Web of Science, Google Scholar - 51
Jiang C. H., Tsien J. Z., Schultz P. G.& Hu Y. . 2001 The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc. Natl Acad. Sci. USA 98, 1930–1934.doi:10.1073/pnas.98.4.1930 (doi:10.1073/pnas.98.4.1930). Crossref, PubMed, Web of Science, Google Scholar - 52
Blalock E. M., Chen K. C., Sharrow K., Herman J. P., Porter N. M., Foster T. C.& Landfield P. W. . 2003 Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J. Neurosci. 23, 3807–3819. Crossref, PubMed, Web of Science, Google Scholar - 53
Burger C., Lopez M. C., Feller J. A., Baker H. V., Muzyczka N.& Mandel R. J. . 2007 Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments. Neurobiol. Learn. Mem. 87, 21–41.doi:10.1016/j.nlm.2006.05.003 (doi:10.1016/j.nlm.2006.05.003). Crossref, PubMed, Web of Science, Google Scholar - 54
Stranahan A. M., Lee K., Becker K. G., Zhang Y., Maudsley S., Martin B., Cutler R. G.& Mattson M. P. . 2010 Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiol. Aging 31, 1937–1949.doi:10.1016/j.neurobiolaging.2008.10.016 (doi:10.1016/j.neurobiolaging.2008.10.016). Crossref, PubMed, Web of Science, Google Scholar - 55
Swanson K. S., Vester B. M., Apanavicius C. J., Kirby N. A.& Schook L. B. . 2009 Implications of age and diet on canine cerebral cortex transcription. Neurobiol. Aging 30, 1314–1326.doi:10.1016/j.neurobiolaging.2007.10.017 (doi:10.1016/j.neurobiolaging.2007.10.017). Crossref, PubMed, Web of Science, Google Scholar - 56
Haberman R. P., Colantuoni C., Stocker A. M., Schmidt A. C., Pedersen J. T.& Gallagher M. . 2011 Prominent hippocampal CA3 gene expression profile in neurocognitive aging. Neurobiol. Aging 32, 1678–1692.doi:10.1016/j.neurobiolaging.2009.10.005 (doi:10.1016/j.neurobiolaging.2009.10.005). Crossref, PubMed, Web of Science, Google Scholar - 57
Kopra O., 2004 A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging. Hum. Mol. Genet. 13, 2893–2906.doi:10.1093/hmg/ddh312 (doi:10.1093/hmg/ddh312). Crossref, PubMed, Web of Science, Google Scholar - 58
Ricciarelli R., d'Abramo C., Massone S., Marinari U., Pronzato M.& Tabaton M. . 2004 Microarray analysis in Alzheimer's disease and normal aging. IUBMB Life 56, 349–354.doi:10.1080/15216540412331286002 (doi:10.1080/15216540412331286002). Crossref, PubMed, Web of Science, Google Scholar - 59
Wu Z. L., Ciallella J. R., Flood D. G., O'Kane T. M., Bozyczko-Coyne D.& Savage M. J. . 2006 Comparative analysis of cortical gene expression in mouse models of Alzheimer's disease. Neurobiol. Aging 27, 377–386.doi:10.1016/j.neurobiolaging.2005.02.010 (doi:10.1016/j.neurobiolaging.2005.02.010). Crossref, PubMed, Web of Science, Google Scholar - 60
Cheung I., Shulha H. P., Jiang Y., Matevossian A., Wang J., Weng Z.& Akbarian S. . 2010 Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl Acad. Sci. USA 107, 8824–8829.doi:10.1073/pnas.1001702107 (doi:10.1073/pnas.1001702107). Crossref, PubMed, Web of Science, Google Scholar - 61
Moroz L. L.& Kohn A. B. . 2010 Do different neurons age differently? Direct genome-wide analysis of aging in single identified cholinergic neurons. Front. Aging Neurosci. 2, 6.doi:10.3389/neuro.24.006.2010 (doi:10.3389/neuro.24.006.2010). Crossref, PubMed, Web of Science, Google Scholar - 62
Peleg S., 2010 Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328, 753–756.doi:10.1126/science.1186088 (doi:10.1126/science.1186088). Crossref, PubMed, Web of Science, Google Scholar - 63
Gemma C., Vila J., Bachstetter A.& Bickford P. C. . 2007 Oxidative stress and the aging brain: from theory to prevention. In Brain aging: models, methods, and mechanisms (ed. D. R. Riddle), pp. 353-374. Boca Raton, FL: CRC Press. Google Scholar - 64
Genova M. L., 2004 The mitochondrial production of reactive oxygen species in relation to aging and pathology. Ann. NY Acad. Sci. 1011, 86–100.doi:10.1196/annals.1293.010 (doi:10.1196/annals.1293.010). Crossref, PubMed, Web of Science, Google Scholar - 65
Serrano F.& Klann E. . 2004 Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res. Rev. 3, 431–443.doi:10.1016/j.arr.2004.05.002 (doi:10.1016/j.arr.2004.05.002). Crossref, PubMed, Web of Science, Google Scholar - 66
Saxena S.& Caroni P. . 2011 Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71, 35–48.doi:10.1016/j.neuron.2011.06.031 (doi:10.1016/j.neuron.2011.06.031). Crossref, PubMed, Web of Science, Google Scholar - 67
Sedensky M. M.& Morgan P. G. . 2006 Mitochondrial respiration and reactive oxygen species in mitochondrial aging mutants. Exp. Gerontol. 41, 237–245.doi:10.1016/j.exger.2006.01.004 (doi:10.1016/j.exger.2006.01.004). Crossref, PubMed, Web of Science, Google Scholar - 68
Fraser H. B., Khaitovich P., Plotkin J. B., Paabo S.& Eisen M. B. . 2005 Aging and gene expression in the primate brain. PLoS Biol. 3, e274.doi:10.1371/journal.pbio.0030274 (doi:10.1371/journal.pbio.0030274). Crossref, PubMed, Web of Science, Google Scholar - 69
Sasaki T., Unno K., Tahara S., Shimada A., Chiba Y., Hoshino M.& Kaneko T. . 2008 Age-related increase of superoxide generation in the brains of mammals and birds. Aging Cell 7, 459–469.doi:10.1111/j.1474-9726.2008.00394.x (doi:10.1111/j.1474-9726.2008.00394.x). Crossref, PubMed, Web of Science, Google Scholar - 70
Yankner B. A., Lu T.& Loerch P. . 2008 The aging brain. Annu. Rev. Pathol. 3, 41–66.doi:10.1146/annurev.pathmechdis.2.010506.092044 (doi:10.1146/annurev.pathmechdis.2.010506.092044). Crossref, PubMed, Web of Science, Google Scholar - 71
Toescu E. C. . 2005 Normal brain ageing: models and mechanisms. Phil. Trans. R. Soc. B 360, 2347–2354.doi:10.1098/rstb.2005.1771 (doi:10.1098/rstb.2005.1771). Link, Web of Science, Google Scholar - 72
Floyd R. A.& Hensley K. . 2002 Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23, 795–807.doi:10.1016/S0197-4580(02)00019-2 (doi:10.1016/S0197-4580(02)00019-2). Crossref, PubMed, Web of Science, Google Scholar - 73
Grimm S., Hoehn A., Davies K. J.& Grune T. . 2011 Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic. Res. 45, 73–88.doi:10.3109/10715762.2010.512040 (doi:10.3109/10715762.2010.512040). Crossref, PubMed, Web of Science, Google Scholar - 74
Korolainen M. A., Goldsteins G., Nyman T. A., Alafuzoff I., Koistinaho J.& Pirttila T. . 2006 Oxidative modification of proteins in the frontal cortex of Alzheimer's disease brain. Neurobiol. Aging 27, 42–53.doi:10.1016/j.neurobiolaging.2004.11.010 (doi:10.1016/j.neurobiolaging.2004.11.010). Crossref, PubMed, Web of Science, Google Scholar - 75
Pratico D. . 2008 Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy: lights and shadows. Ann. NY Acad. Sci. 1147, 70–78.doi:10.1196/annals.1427.010 (doi:10.1196/annals.1427.010). Crossref, PubMed, Web of Science, Google Scholar - 76
Nunomura A., 2012 The earliest stage of cognitive impairment in transition from normal aging to Alzheimer disease is marked by prominent RNA oxidation in vulnerable neurons. J. Neuropathol. Exp. Neurol. 71, 233–241.doi:10.1097/NEN.0b013e318248e614 (doi:10.1097/NEN.0b013e318248e614). Crossref, PubMed, Web of Science, Google Scholar - 77
Du H., Guo L., Yan S., Sosunov A. A., McKhann G. M.& Yan S. S. . 2010 Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc. Natl Acad. Sci. USA 107, 18 670–18 675.doi:10.1073/pnas.1006586107 (doi:10.1073/pnas.1006586107). Crossref, Web of Science, Google Scholar - 78
Lee H. P., Pancholi N., Esposito L., Previll L. A., Wang X., Zhu X., Smith M. A.& Lee H. G. . 2012 Early induction of oxidative stress in mouse model of Alzheimer disease with reduced mitochondrial superoxide dismutase activity. PLoS ONE 7, e28033.doi:10.1371/journal.pone.0028033 (doi:10.1371/journal.pone.0028033). Crossref, PubMed, Web of Science, Google Scholar - 79
McManus M. J., Murphy M. P.& Franklin J. L. . 2011 The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 31, 15 703–15 715.doi:10.1523/JNEUROSCI.0552-11.2011 (doi:10.1523/JNEUROSCI.0552-11.2011). Crossref, Web of Science, Google Scholar - 80
Guzman J. N., Sanchez-Padilla J., Wokosin D., Kondapalli J., Ilijic E., Schumacker P. T.& Surmeier D. J. . 2010 Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700.doi:10.1038/nature09536 (doi:10.1038/nature09536). Crossref, PubMed, Web of Science, Google Scholar - 81
Venkateshappa C., Harish G., Mythri R. B., Mahadevan A., Bharath M. M.& Shankar S. K. . 2012 Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson's disease. Neurochem. Res. 37, 358–369.doi:10.1007/s11064-011-0619-7 (doi:10.1007/s11064-011-0619-7). Crossref, PubMed, Web of Science, Google Scholar - 82
German D. C., Manaye K. F., White C. L., Woodward D. J., McIntire D. D., Smith W. K., Kalaria R. N.& Mann D. M. . 1992 Disease-specific patterns of locus coeruleus cell loss. Ann. Neurol. 32, 667–676.doi:10.1002/ana.410320510 (doi:10.1002/ana.410320510). Crossref, PubMed, Web of Science, Google Scholar - 83
Napolitano A., Manini P.& d'Ischia M. . 2011 Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr. Med. Chem. 18, 1832–1845.doi:10.2174/092986711795496863 (doi:10.2174/092986711795496863). Crossref, PubMed, Web of Science, Google Scholar - 84
Head E. . 2009 Oxidative damage and cognitive dysfunction: antioxidant treatments to promote healthy brain aging. Neurochem. Res. 34, 670–678.doi:10.1007/s11064-008-9808-4 (doi:10.1007/s11064-008-9808-4). Crossref, PubMed, Web of Science, Google Scholar - 85
Lau F. C., Shukitt-Hale B.& Joseph J. A. . 2005 The beneficial effects of fruit polyphenols on brain aging. Neurobiol. Aging 26((Suppl. 1)), 128–132.doi:10.1016/j.neurobiolaging.2005.08.007 (doi:10.1016/j.neurobiolaging.2005.08.007). Crossref, PubMed, Web of Science, Google Scholar - 86
Melov S. . 2002 Therapeutics against mitochondrial oxidative stress in animal models of aging. Ann. NY Acad. Sci. 959, 330–340.doi:10.1111/j.1749-6632.2002.tb02104.x (doi:10.1111/j.1749-6632.2002.tb02104.x). Crossref, PubMed, Web of Science, Google Scholar - 87
Haxaire C., Turpin F. R., Potier B., Kervern M., Sinet P. M., Barbanel G., Mothet J. P., Dutar P.& Billard J. M. . 2012 Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting d-serine-dependent NMDA receptor activation. Aging Cell 11, 336–344.doi:10.1111/j.1474-9726.2012.00792.x (doi:10.1111/j.1474-9726.2012.00792.x). Crossref, PubMed, Web of Science, Google Scholar - 88
Liu R., Liu I. Y., Bi X., Thompson R. F., Doctrow S. R., Malfroy B.& Baudry M. . 2003 Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc. Natl Acad. Sci. USA 100, 8526–8531.doi:10.1073/pnas.1332809100 (doi:10.1073/pnas.1332809100). Crossref, PubMed, Web of Science, Google Scholar - 89
Kolosova N. G., Shcheglova T. V., Sergeeva S. V.& Loskutova L. V. . 2006 Long-term antioxidant supplementation attenuates oxidative stress markers and cognitive deficits in senescent-accelerated OXYS rats. Neurobiol. Aging 27, 1289–1297.doi:10.1016/j.neurobiolaging.2005.07.022 (doi:10.1016/j.neurobiolaging.2005.07.022). Crossref, PubMed, Web of Science, Google Scholar - 90
Shih A. Y., Imbeault S., Barakauskas V., Erb H., Jiang L., Li P.& Murphy T. H. . 2005 Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J. Biol. Chem. 280, 22 925–22 936.doi:10.1074/jbc.M414635200 (doi:10.1074/jbc.M414635200). Crossref, Web of Science, Google Scholar - 91
Esposito E., Rotilio D., Di Matteo V., Di Giulio C., Cacchio M.& Algeri S. . 2002 A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol. Aging 23, 719–735.doi:10.1016/S0197-4580(02)00078-7 (doi:10.1016/S0197-4580(02)00078-7). Crossref, PubMed, Web of Science, Google Scholar - 92
Kumar A., Dogra S.& Prakash A. . 2009 Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against d-galactose induced senescence in mice. Naunyn Schmiedebergs Arch. Pharmacol. 380, 431–441.doi:10.1007/s00210-009-0442-8 (doi:10.1007/s00210-009-0442-8). Crossref, PubMed, Web of Science, Google Scholar - 93
Peng Y., Sun J., Hon S., Nylander A. N., Xia W., Feng Y., Wang X.& Lemere C. A. . 2010 L-3-n-butylphthalide improves cognitive impairment and reduces amyloid-beta in a transgenic model of Alzheimer's disease. J. Neurosci. 30, 8180–8189.doi:10.1523/JNEUROSCI.0340-10.2010 (doi:10.1523/JNEUROSCI.0340-10.2010). Crossref, PubMed, Web of Science, Google Scholar - 94
Yokota T., 2001 Delayed-onset ataxia in mice lacking alpha-tocopherol transfer protein: model for neuronal degeneration caused by chronic oxidative stress. Proc. Natl Acad. Sci. USA 98, 15 185–15 190.doi:10.1073/pnas.261456098 (doi:10.1073/pnas.261456098). Crossref, Web of Science, Google Scholar - 95
Lipinski M. M., 2010 Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease. Proc. Natl Acad. Sci. USA 107, 14 164–14 169.doi:10.1073/pnas.1009485107 (doi:10.1073/pnas.1009485107). Crossref, Web of Science, Google Scholar - 96
West R. J.& Sweeney S. T. . 2012 Oxidative stress and autophagy: mediators of synapse growth? Autophagy 8, 284–285.doi:10.4161/auto.8.2.18981 (doi:10.4161/auto.8.2.18981). Crossref, PubMed, Web of Science, Google Scholar - 97
Hardy J.& Selkoe D. J. . 2002 The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356.doi:10.1126/science.1072994 (doi:10.1126/science.1072994). Crossref, PubMed, Web of Science, Google Scholar - 98
Chu Y.& Kordower J. H. . 2007 Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson's disease? Neurobiol. Dis. 25, 134–149.doi:10.1016/j.nbd.2006.08.021 (doi:10.1016/j.nbd.2006.08.021). Crossref, PubMed, Web of Science, Google Scholar - 99
Lee S. J., Lim H. S., Masliah E.& Lee H. J. . 2011 Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci. Res. 70, 339–348.doi:10.1016/j.neures.2011.05.008 (doi:10.1016/j.neures.2011.05.008). Crossref, PubMed, Web of Science, Google Scholar - 100
Casarejos M. J., Solano R. M., Rodriguez-Navarro J. A., Gomez A., Perucho J., Castano J. G., Garcia de Yebenes J.& Mena M. A. . 2009 Parkin deficiency increases the resistance of midbrain neurons and glia to mild proteasome inhibition: the role of autophagy and glutathione homeostasis. J. Neurochem. 110, 1523–1537.doi:10.1111/j.1471-4159.2009.06248.x (doi:10.1111/j.1471-4159.2009.06248.x). Crossref, PubMed, Web of Science, Google Scholar - 101
Nakanishi H. . 2003 Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res. Rev. 2, 367–381.doi:10.1016/S1568-1637(03)00027-8 (doi:10.1016/S1568-1637(03)00027-8). Crossref, PubMed, Web of Science, Google Scholar - 102
Pandey U. B., 2007 HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863.doi:10.1038/nature05853 (doi:10.1038/nature05853). Crossref, PubMed, Web of Science, Google Scholar - 103
Caballero B.& Coto-Montes A. . 2012 An insight into the role of autophagy in cell responses in the aging and neurodegenerative brain. Histol. Histopathol. 27, 263–275. PubMed, Web of Science, Google Scholar - 104
Ling D.& Salvaterra P. M. . 2011 Brain aging and Abeta neurotoxicity converge via deterioration in autophagy-lysosomal system: a conditional Drosophila model linking Alzheimer's neurodegeneration with aging. Acta Neuropathol. 121, 183–191.doi:10.1007/s00401-010-0772-0 (doi:10.1007/s00401-010-0772-0). Crossref, PubMed, Web of Science, Google Scholar - 105
Walter S., 2011 A genome-wide association study of aging. Neurobiol. Aging 32, 2109 e15–e28. Crossref, Web of Science, Google Scholar - 106
Rubinsztein D. C., Marino G.& Kroemer G. . 2011 Autophagy and aging. Cell 146, 682–695.doi:10.1016/j.cell.2011.07.030 (doi:10.1016/j.cell.2011.07.030). Crossref, PubMed, Web of Science, Google Scholar - 107
Crowe E., Sell C., Thomas J. D., Johannes G. J.& Torres C. . 2009 Activation of proteasome by insulin-like growth factor-I may enhance clearance of oxidized proteins in the brain. Mech. Ageing Dev. 130, 793–800.doi:10.1016/j.mad.2009.10.005 (doi:10.1016/j.mad.2009.10.005). Crossref, PubMed, Web of Science, Google Scholar - 108
Medina D. X., Caccamo A.& Oddo S. . 2011 Methylene blue reduces abeta levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 21, 140–149.doi:10.1111/j.1750-3639.2010.00430.x (doi:10.1111/j.1750-3639.2010.00430.x). Crossref, PubMed, Web of Science, Google Scholar - 109
Cooper J. D., Messer A., Feng A. K., Chua-Couzens J.& Mobley W. C. . 1999 Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin-like growth factor-1 treatment. J. Neurosci. 19, 2556–2567. Crossref, PubMed, Web of Science, Google Scholar - 110
Poulose S. M., Bielinski D. F., Carrihill-Knoll K., Rabin B. M.& Shukitt-Hale B. . 2011 Exposure to 16O-particle radiation causes aging-like decrements in rats through increased oxidative stress, inflammation and loss of autophagy. Radiat. Res. 176, 761–769.doi:10.1667/RR2605.1 (doi:10.1667/RR2605.1). Crossref, PubMed, Web of Science, Google Scholar - 111
Komatsu M., 2006 Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884.doi:10.1038/nature04723 (doi:10.1038/nature04723). Crossref, PubMed, Web of Science, Google Scholar - 112
Qin A. P., Zhang H. L.& Qin Z. H. . 2008 Mechanisms of lysosomal proteases participating in cerebral ischemia-induced neuronal death. Neurosci. Bull. 24, 117–123.doi:10.1007/s12264-008-0117-3 (doi:10.1007/s12264-008-0117-3). Crossref, PubMed, Google Scholar - 113
Wang Y., Dong X. X., Cao Y., Liang Z. Q., Han R., Wu J. C., Gu Z. L.& Qin Z. H. . 2009 p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur. J. Neurosci. 30, 2258–2270.doi:10.1111/j.1460-9568.2009.07025.x (doi:10.1111/j.1460-9568.2009.07025.x). Crossref, PubMed, Web of Science, Google Scholar - 114
Wen Y. D., Sheng R., Zhang L. S., Han R., Zhang X., Zhang X. D., Han F., Fukunaga K.& Qin Z. H. . 2008 Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4, 762–769. Crossref, PubMed, Web of Science, Google Scholar - 115
Harris H.& Rubinsztein D. C. . 2011 Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol. 8, 108–117.doi:10.1038/nrneurol.2011.200 (doi:10.1038/nrneurol.2011.200). Crossref, PubMed, Web of Science, Google Scholar - 116
Kaunzner U. W., Miller M. M., Gottfried-Blackmore A., Gal-Toth J., Felger J. C., McEwen B. S.& Bulloch K. . 2012 Accumulation of resident and peripheral dendritic cells in the aging CNS. Neurobiol. Aging 33, 681–693.doi:10.1016/j.neurobiolaging.2010.06.007 (doi:10.1016/j.neurobiolaging.2010.06.007). Crossref, PubMed, Web of Science, Google Scholar - 117
Schuitemaker A., 2010 Microglial activation in healthy aging. Neurobiol. Aging 33, 1067–1072.doi:10.1016/j.neurobiolaging.2010.09.016 (doi:10.1016/j.neurobiolaging.2010.09.016). Crossref, PubMed, Web of Science, Google Scholar - 118
Agulhon C., Petravicz J., McMullen A. B., Sweger E. J., Minton S. K., Taves S. R., Casper K. B., Fiacco T. A.& McCarthy K. D. . 2008 What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946.doi:10.1016/j.neuron.2008.09.004 (doi:10.1016/j.neuron.2008.09.004). Crossref, PubMed, Web of Science, Google Scholar - 119
Streit W. J. . 2005 Microglia and neuroprotection: implications for Alzheimer's disease. Brain Res. Brain Res. Rev. 48, 234–239.doi:10.1016/j.brainresrev.2004.12.013 (doi:10.1016/j.brainresrev.2004.12.013). Crossref, PubMed, Google Scholar - 120
Castro M. A., Beltran F. A., Brauchi S.& Concha I. I. . 2009 A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J. Neurochem. 110, 423–440.doi:10.1111/j.1471-4159.2009.06151.x (doi:10.1111/j.1471-4159.2009.06151.x). Crossref, PubMed, Web of Science, Google Scholar - 121
Petzold G. C.& Murthy V. N. . 2011 Role of astrocytes in neurovascular coupling. Neuron 71, 782–797.doi:10.1016/j.neuron.2011.08.009 (doi:10.1016/j.neuron.2011.08.009). Crossref, PubMed, Web of Science, Google Scholar - 122
Bacci A., Verderio C., Pravettoni E.& Matteoli M. . 1999 The role of glial cells in synaptic function. Phil. Trans. R. Soc. Lond. B 354, 403–409.doi:10.1098/rstb.1999.0393 (doi:10.1098/rstb.1999.0393). Link, Web of Science, Google Scholar - 123
Ferron S. R., 2011 Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475, 381–385.doi:10.1038/nature10229 (doi:10.1038/nature10229). Crossref, PubMed, Web of Science, Google Scholar - 124
Gemma C., Bachstetter A. D.& Bickford P. C. . 2010 Neuron-microglia dialogue and hippocampal neurogenesis in the aged brain. Aging Dis. 1, 232–244. PubMed, Web of Science, Google Scholar - 125
Hanisch U. K.& Kettenmann H. . 2007 Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394.doi:10.1038/nn1997 (doi:10.1038/nn1997). Crossref, PubMed, Web of Science, Google Scholar - 126
Lucin K. M.& Wyss-Coray T. . 2009 Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64, 110–122.doi:10.1016/j.neuron.2009.08.039 (doi:10.1016/j.neuron.2009.08.039). Crossref, PubMed, Web of Science, Google Scholar - 127
Tremblay M. E., Stevens B., Sierra A., Wake H., Bessis A.& Nimmerjahn A. . 2011 The role of microglia in the healthy brain. J. Neurosci. 31, 16 064–16 069.doi:10.1523/JNEUROSCI.4158-11.2011 (doi:10.1523/JNEUROSCI.4158-11.2011). Crossref, Web of Science, Google Scholar - 128
Finch C. E. . 2010 Evolution in health and medicine Sackler colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc. Natl Acad. Sci. USA 107((Suppl. 1)), 1718–1724.doi:10.1073/pnas.0909606106 (doi:10.1073/pnas.0909606106). Crossref, PubMed, Web of Science, Google Scholar - 129
Villeda S. A., 2011 The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94.doi:10.1038/nature10357 (doi:10.1038/nature10357). Crossref, PubMed, Web of Science, Google Scholar - 130
Katsel P., Tan W.& Haroutunian V. . 2009 Gain in brain immunity in the oldest-old differentiates cognitively normal from demented individuals. PLoS ONE 4, e7642.doi:10.1371/journal.pone.0007642 (doi:10.1371/journal.pone.0007642). Crossref, PubMed, Web of Science, Google Scholar - 131
Lynch A. M., Murphy K. J., Deighan B. F., O'Reilly J. A., Gun'ko Y. K., Cowley T. R., Gonzalez-Reyes R. E.& Lynch M. A. . 2010 The impact of glial activation in the aging brain. Aging Dis. 1, 262–278. PubMed, Web of Science, Google Scholar - 132
Naert G.& Rivest S. . 2011 CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer's disease. J. Neurosci. 31, 6208–6220.doi:10.1523/JNEUROSCI.0299-11.2011 (doi:10.1523/JNEUROSCI.0299-11.2011). Crossref, PubMed, Web of Science, Google Scholar - 133
Moriyama M., 2011 Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J. Neurosci. 31, 3981–3989.doi:10.1523/JNEUROSCI.3617-10.2011 (doi:10.1523/JNEUROSCI.3617-10.2011). Crossref, PubMed, Web of Science, Google Scholar - 134
Russo I., Barlati S.& Bosetti F. . 2011 Effects of neuroinflammation on the regenerative capacity of brain stem cells. J. Neurochem. 116, 947–956.doi:10.1111/j.1471-4159.2010.07168.x (doi:10.1111/j.1471-4159.2010.07168.x). Crossref, PubMed, Web of Science, Google Scholar - 135
Lynch M. A. . 2010 Age-related neuroinflammatory changes negatively impact on neuronal function. Front. Aging Neurosci. 1, 1–8. Crossref, Web of Science, Google Scholar - 136
Tha K. K., Okuma Y., Miyazaki H., Murayama T., Uehara T., Hatakeyama R., Hayashi Y.& Nomura Y. . 2000 Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885, 25–31.doi:10.1016/S0006-8993(00)02883-3 (doi:10.1016/S0006-8993(00)02883-3). Crossref, PubMed, Web of Science, Google Scholar - 137
Perry V. H., Nicoll J. A.& Holmes C. . 2010 Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193–201.doi:10.1038/nrneurol.2010.17 (doi:10.1038/nrneurol.2010.17). Crossref, PubMed, Web of Science, Google Scholar - 138
Lue L. F., Kuo Y. M., Beach T.& Walker D. G. . 2010 Microglia activation and anti-inflammatory regulation in Alzheimer's disease. Mol. Neurobiol. 41, 115–128.doi:10.1007/s12035-010-8106-8 (doi:10.1007/s12035-010-8106-8). Crossref, PubMed, Web of Science, Google Scholar - 139
Sardi F., Fassina L., Venturini L., Inguscio M., Guerriero F., Rolfo E.& Ricevuti G. . 2011 Alzheimer's disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun. Rev. 11, 149–153.doi:10.1016/j.autrev.2011.09.005 (doi:10.1016/j.autrev.2011.09.005). Crossref, PubMed, Web of Science, Google Scholar - 140
Simpson J. E., Ince P. G., Lace G., Forster G., Shaw P. J., Matthews F., Savva G., Brayne C.& Wharton S. B. . 2010 Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol. Aging 31, 578–590.doi:10.1016/j.neurobiolaging.2008.05.015 (doi:10.1016/j.neurobiolaging.2008.05.015). Crossref, PubMed, Web of Science, Google Scholar - 141
Bradford J., Shin J. Y., Roberts M., Wang C. E., Li X. J.& Li S. . 2009 Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc. Natl Acad. Sci. USA 106, 22 480–22 485.doi:10.1073/pnas.0911503106 (doi:10.1073/pnas.0911503106). Crossref, Web of Science, Google Scholar - 142
Katsouri L.& Georgopoulos S. . 2011 Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer's disease mouse model. PLoS ONE 6, e21880.doi:10.1371/journal.pone.0021880 (doi:10.1371/journal.pone.0021880). Crossref, PubMed, Web of Science, Google Scholar - 143
Klein R. L., Dayton R. D., Diaczynsky C. G.& Wang D. B. . 2010 Pronounced microgliosis and neurodegeneration in aged rats after tau gene transfer. Neurobiol. Aging 31, 2091–2102.doi:10.1016/j.neurobiolaging.2008.12.002 (doi:10.1016/j.neurobiolaging.2008.12.002). Crossref, PubMed, Web of Science, Google Scholar - 144
Tress O., 2011 Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus–Merzbacher-like disease in humans. PLoS Genet. 7, e1002146.doi:10.1371/journal.pgen.1002146 (doi:10.1371/journal.pgen.1002146). Crossref, PubMed, Web of Science, Google Scholar - 145
Campisi J. . 2005 Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522.doi:10.1016/j.cell.2005.02.003 (doi:10.1016/j.cell.2005.02.003). Crossref, PubMed, Web of Science, Google Scholar - 146
Salminen A., Ojala J., Kaarniranta K., Haapasalo A., Hiltunen M.& Soininen H. . 2011 Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3–11.doi:10.1111/j.1460-9568.2011.07738.x (doi:10.1111/j.1460-9568.2011.07738.x). Crossref, PubMed, Web of Science, Google Scholar - 147
Garcia-Matas S., Gutierrez-Cuesta J., Coto-Montes A., Rubio-Acero R., Diez-Vives C., Camins A., Pallas M., Sanfeliu C.& Cristofol R. . 2008 Dysfunction of astrocytes in senescence-accelerated mice SAMP8 reduces their neuroprotective capacity. Aging Cell 7, 630–640.doi:10.1111/j.1474-9726.2008.00410.x (doi:10.1111/j.1474-9726.2008.00410.x). Crossref, PubMed, Web of Science, Google Scholar - 148
Nakanishi H.& Wu Z. . 2009 Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav. Brain Res. 201, 1–7.doi:10.1016/j.bbr.2009.02.001 (doi:10.1016/j.bbr.2009.02.001). Crossref, PubMed, Web of Science, Google Scholar - 149
Luo X. G., Ding J. Q.& Chen S. D. . 2010 Microglia in the aging brain: relevance to neurodegeneration. Mol. Neurodegener. 5, 12.doi:10.1186/1750-1326-5-12 (doi:10.1186/1750-1326-5-12). Crossref, PubMed, Web of Science, Google Scholar - 150
von Bernhardi R., Tichauer J. E.& Eugenin J. . 2010 Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders. J. Neurochem. 112, 1099–1114.doi:10.1111/j.1471-4159.2009.06537.x (doi:10.1111/j.1471-4159.2009.06537.x). Crossref, PubMed, Web of Science, Google Scholar - 151
Ron-Harel N.& Schwartz M. . 2009 Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci. 32, 367–375.doi:10.1016/j.tins.2009.03.003 (doi:10.1016/j.tins.2009.03.003). Crossref, PubMed, Web of Science, Google Scholar - 152
Hampson R. E., Simeral J. D., Kelly E. J.& Deadwyler S. A. . 2003 Tolerance to the memory disruptive effects of cannabinoids involves adaptation by hippocampal neurons. Hippocampus 13, 543–556.doi:10.1002/hipo.10081 (doi:10.1002/hipo.10081). Crossref, PubMed, Web of Science, Google Scholar - 153
Mechoulam R., Fride E.& Di M.arzo V. . 1998 Endocannabinoids. Eur. J. Pharmacol. 359, 1–18.doi:10.1016/S0014-2999(98)00649-9 (doi:10.1016/S0014-2999(98)00649-9). Crossref, PubMed, Web of Science, Google Scholar - 154
Gallily R., Breuer A.& Mechoulam R. . 2000 2-Arachidonylglycerol, an endogenous cannabinoid, inhibits tumor necrosis factor-alpha production in murine macrophages, and in mice. Eur. J. Pharmacol. 406, R5–R7.doi:10.1016/S0014-2999(00)00653-1 (doi:10.1016/S0014-2999(00)00653-1). Crossref, PubMed, Web of Science, Google Scholar - 155
Nomura D. K., 2011 Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 334, 809–813.doi:10.1126/science.1209200 (doi:10.1126/science.1209200). Crossref, PubMed, Web of Science, Google Scholar - 156
Kessiova M., Alexandrova A., Georgieva A., Kirkova M.& Todorov S. . 2006 In vitro effects of CB1 receptor ligands on lipid peroxidation and antioxidant defense systems in the rat brain. Pharmacol. Rep. 58, 870–875. PubMed, Web of Science, Google Scholar - 157
Bobrov M. Y., Lizhin A. A., Andrianova E. L., Gretskaya N. M., Frumkina L. E., Khaspekov L. G.& Bezuglov V. V. . 2008 Antioxidant and neuroprotective properties of N-arachidonoyldopamine. Neurosci. Lett. 431, 6–11.doi:10.1016/j.neulet.2007.11.010 (doi:10.1016/j.neulet.2007.11.010). Crossref, PubMed, Web of Science, Google Scholar - 158
Marsicano G., Moosmann B., Hermann H., Lutz B.& Behl C. . 2002 Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J. Neurochem. 80, 448–456.doi:10.1046/j.0022-3042.2001.00716.x (doi:10.1046/j.0022-3042.2001.00716.x). Crossref, PubMed, Web of Science, Google Scholar - 159
Carracedo A., Geelen M. J., Diez M., Hanada K., Guzman M.& Velasco G. . 2004 Ceramide sensitizes astrocytes to oxidative stress: protective role of cannabinoids. Biochem. J. 380, 435–440.doi:10.1042/BJ20031714 (doi:10.1042/BJ20031714). Crossref, PubMed, Web of Science, Google Scholar - 160
Garcia C., Palomo-Garo C., Garcia-Arencibia M., Ramos J., Pertwee R.& Fernandez-Ruiz J. . 2011 Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ-THCV in animal models of Parkinson's disease. Br. J. Pharmacol. 163, 1495–1506.doi:10.1111/j.1476-5381.2011.01278.x (doi:10.1111/j.1476-5381.2011.01278.x). Crossref, PubMed, Web of Science, Google Scholar - 161
Garcia-Arencibia M., Gonzalez S., de Lago E., Ramos J. A., Mechoulam R.& Fernandez-Ruiz J. . 2007 Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res. 1134, 162–170.doi:10.1016/j.brainres.2006.11.063 (doi:10.1016/j.brainres.2006.11.063). Crossref, PubMed, Web of Science, Google Scholar - 162
Kim H. J., Waataja J. J.& Thayer S. A. . 2008 Cannabinoids inhibit network-driven synapse loss between hippocampal neurons in culture. J. Pharmacol. Exp. Ther. 325, 850–858.doi:10.1124/jpet.107.131607 (doi:10.1124/jpet.107.131607). Crossref, PubMed, Web of Science, Google Scholar - 163
Goncharov I., Weiner L.& Vogel Z. . 2005 Δ9-tetrahydrocannabinol increases C6 glioma cell death produced by oxidative stress. Neuroscience 134, 567–574.doi:10.1016/j.neuroscience.2005.04.042 (doi:10.1016/j.neuroscience.2005.04.042). Crossref, PubMed, Web of Science, Google Scholar - 164
McKallip R. J., Jia W., Schlomer J., Warren J. W., Nagarkatti P. S.& Nagarkatti M. . 2006 Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol. Pharmacol. 70, 897–908.doi:10.1124/mol.106.023937 (doi:10.1124/mol.106.023937). Crossref, PubMed, Web of Science, Google Scholar - 165
Giuliano M., Calvaruso G., Pellerito O., Portanova P., Carlisi D., Vento R.& Tesoriere G. . 2006 Anandamide-induced apoptosis in Chang liver cells involves ceramide and JNK/AP-1 pathway. Int. J. Mol. Med. 17, 811–819. PubMed, Web of Science, Google Scholar - 166
Siegmund S. V., Qian T., de Minicis S., Harvey-White J., Kunos G., Vinod K. Y., Hungund B.& Schwabe R. F. . 2007 The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species. FASEB J. 21, 2798–2806.doi:10.1096/fj.06-7717com (doi:10.1096/fj.06-7717com). Crossref, PubMed, Web of Science, Google Scholar - 167
Brailoiu G. C., Oprea T. I., Zhao P., Abood M. E.& Brailoiu E. . 2011 Intracellular cannabinoid type 1 (CB1) receptors are activated by anandamide. J. Biol. Chem. 286, 29 166–29 174.doi:10.1074/jbc.M110.217463 (doi:10.1074/jbc.M110.217463). Crossref, Web of Science, Google Scholar - 168
Rozenfeld R.& Devi L. A. . 2008 Regulation of CB1 cannabinoid receptor trafficking by the adaptor protein AP-3. FASEB J. 22, 2311–2322.doi:10.1096/fj.07-102731 (doi:10.1096/fj.07-102731). Crossref, PubMed, Web of Science, Google Scholar - 169
Noonan J., Tanveer R., Klompas A., Gowran A., McKiernan J.& Campbell V. A. . 2010 Endocannabinoids prevent beta-amyloid-mediated lysosomal destabilization in cultured neurons. J. Biol. Chem. 285, 38 543–38 554.doi:10.1074/jbc.M110.162040 (doi:10.1074/jbc.M110.162040). Crossref, Web of Science, Google Scholar - 170
Gowran A.& Campbell V. A. . 2008 A role for p53 in the regulation of lysosomal permeability by Δ9-tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration. J. Neurochem. 105, 1513–1524.doi:10.1111/j.1471-4159.2008.05278.x (doi:10.1111/j.1471-4159.2008.05278.x). Crossref, PubMed, Web of Science, Google Scholar - 171
Salazar M., 2009 Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest. 119, 1359–1372.doi:10.1172/JCI37948 (doi:10.1172/JCI37948). Crossref, PubMed, Web of Science, Google Scholar - 172
Vara D., Salazar M., Olea-Herrero N., Guzman M., Velasco G.& Diaz-Laviada I. . 2011 Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ. 18, 1099–1111.doi:10.1038/cdd.2011.32 (doi:10.1038/cdd.2011.32). Crossref, PubMed, Web of Science, Google Scholar - 173
Donadelli M., 2011 Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis. 2, e152.doi:10.1038/cddis.2011.36 (doi:10.1038/cddis.2011.36). Crossref, PubMed, Web of Science, Google Scholar - 174
Redlich S., Ribes S., Schutze S., Czesnik D.& Nau R. . 2012 Palmitoylethanolamide stimulates phagocytosis of Escherichia coli K1 and Streptococcus pneumoniae R6 by microglial cells. J. Neuroimmunol. 244, 32–34.doi:10.1016/j.jneuroim.2011.12.013 (doi:10.1016/j.jneuroim.2011.12.013). Crossref, PubMed, Web of Science, Google Scholar - 175
Athanasiou A., 2007 Cannabinoid receptor agonists are mitochondrial inhibitors: a unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem. Biophys. Res. Commun. 364, 131–137.doi:10.1016/j.bbrc.2007.09.107 (doi:10.1016/j.bbrc.2007.09.107). Crossref, PubMed, Web of Science, Google Scholar - 176
Benard G., 2012 Mitochondrial CB(1) receptors regulate neuronal energy metabolism. Nat. Neurosci. 15, 558–564.doi:10.1038/nn.3053 (doi:10.1038/nn.3053). Crossref, PubMed, Web of Science, Google Scholar - 177
Chiu P., Karler R., Craven C., Olsen D. M.& Turkanis S. A. . 1975 The influence of Δ9-tetrahydrocannabinol, cannabinol and cannabidiol on tissue oxygen consumption. Res. Commun. Chem. Pathol. Pharmacol. 12, 267–286. PubMed, Google Scholar - 178
Zaccagnino P., Corcelli A., Baronio M.& Lorusso M. . 2011 Anandamide inhibits oxidative phosphorylation in isolated liver mitochondria. FEBS Lett. 585, 429–434.doi:10.1016/j.febslet.2010.12.032 (doi:10.1016/j.febslet.2010.12.032). Crossref, PubMed, Web of Science, Google Scholar - 179
Costa B.& Colleoni M. . 2000 Changes in rat brain energetic metabolism after exposure to anandamide or Δ(9)-tetrahydrocannabinol. Eur. J. Pharmacol. 395, 1–7.doi:10.1016/S0014-2999(00)00170-9 (doi:10.1016/S0014-2999(00)00170-9). Crossref, PubMed, Web of Science, Google Scholar - 180
Velez-Pardo C., Jimenez-Del-Rio M., Lores-Arnaiz S.& Bustamante J. . 2010 Protective effects of the synthetic cannabinoids CP55,940 and JWH-015 on rat brain mitochondria upon paraquat exposure. Neurochem. Res. 35, 1323–1332.doi:10.1007/s11064-010-0188-1 (doi:10.1007/s11064-010-0188-1). Crossref, PubMed, Web of Science, Google Scholar - 181
Zaccagnino P., D'Oria S., Romano L. L., Di Venere A., Sardanelli A. M.& Lorusso M. . 2012 The endocannabinoid 2-arachidonoylglicerol decreases calcium induced cytochrome c release from liver mitochondria. J. Bioenerg. Biomembr. 44, 273–280.doi:10.1007/s10863-012-9431-6 (doi:10.1007/s10863-012-9431-6). Crossref, PubMed, Web of Science, Google Scholar - 182
Germain N., Boichot E., Advenier C., Berdyshev E. V.& Lagente V. . 2002 Effect of the cannabinoid receptor ligand, WIN 55,212-2, on superoxide anion and TNF-α production by human mononuclear cells. Int. Immunopharmacol. 2, 537–543.doi:10.1016/S1567-5769(01)00200-4 (doi:10.1016/S1567-5769(01)00200-4). Crossref, PubMed, Web of Science, Google Scholar - 183
Atwood B. K.& Mackie K. . 2010 CB2: a cannabinoid receptor with an identity crisis. Br. J. Pharmacol. 160, 467–479.doi:10.1111/j.1476-5381.2010.00729.x (doi:10.1111/j.1476-5381.2010.00729.x). Crossref, PubMed, Web of Science, Google Scholar - 184
Lou Z. Y., Chen C., He Q., Zhao C. B.& Xiao B. G. . 2011 Targeting CB(2) receptor as a neuroinflammatory modulator in experimental autoimmune encephalomyelitis. Mol. Immunol. 49, 453–461.doi:10.1016/j.molimm.2011.09.016 (doi:10.1016/j.molimm.2011.09.016). Crossref, PubMed, Web of Science, Google Scholar - 185
Stella N. . 2009 Endocannabinoid signaling in microglial cells. Neuropharmacology 56((Suppl. 1)), 244–253.doi:10.1016/j.neuropharm.2008.07.037 (doi:10.1016/j.neuropharm.2008.07.037). Crossref, PubMed, Web of Science, Google Scholar - 186
Stella N. . 2010 Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia 58, 1017–1030.doi:10.1002/glia.20983 (doi:10.1002/glia.20983). Crossref, PubMed, Web of Science, Google Scholar - 187
Racz I., 2008 Crucial role of CB(2) cannabinoid receptor in the regulation of central immune responses during neuropathic pain. J. Neurosci. 28, 12 125–12 135.doi:10.1523/JNEUROSCI.3400-08.2008 (doi:10.1523/JNEUROSCI.3400-08.2008). Crossref, Web of Science, Google Scholar - 188
Palazuelos J., 2009 Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain 132, 3152–3164.doi:10.1093/brain/awp239 (doi:10.1093/brain/awp239). Crossref, PubMed, Web of Science, Google Scholar - 189
Walter L., Franklin A., Witting A., Moller T.& Stella N. . 2002 Astrocytes in culture produce anandamide and other acylethanolamides. J. Biol. Chem. 277, 20 869–20 876.doi:10.1074/jbc.M110813200 (doi:10.1074/jbc.M110813200). Crossref, Web of Science, Google Scholar - 190
Witting A., Walter L., Wacker J., Moller T.& Stella N. . 2004 P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc. Natl Acad. Sci. USA 101, 3214–3219.doi:10.1073/pnas.0306707101 (doi:10.1073/pnas.0306707101). Crossref, PubMed, Web of Science, Google Scholar - 191
Muccioli G. G.& Stella N. . 2008 Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology 54, 16–22.doi:10.1016/j.neuropharm.2007.05.015 (doi:10.1016/j.neuropharm.2007.05.015). Crossref, PubMed, Web of Science, Google Scholar - 192
Carrier E. J., Kearn C. S., Barkmeier A. J., Breese N. M., Yang W., Nithipatikom K., Pfister S. L., Campbell W. B.& Hillard C. J. . 2004 Cultured rat microglial cells synthesize the endocannabinoid 2-arachidonylglycerol, which increases proliferation via a CB2 receptor-dependent mechanism. Mol. Pharmacol. 65, 999–1007.doi:10.1124/mol.65.4.999 (doi:10.1124/mol.65.4.999). Crossref, PubMed, Web of Science, Google Scholar - 193
Muccioli G. G., Xu C., Odah E., Cudaback E., Cisneros J. A., Lambert D. M., Lopez Rodriguez M. L., Bajjalieh S.& Stella N. . 2007 Identification of a novel endocannabinoid-hydrolyzing enzyme expressed by microglial cells. J. Neurosci. 27, 2883–2889.doi:10.1523/JNEUROSCI.4830-06.2007 (doi:10.1523/JNEUROSCI.4830-06.2007). Crossref, PubMed, Web of Science, Google Scholar - 194
Walter L., Dinh T.& Stella N. . 2004 ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J. Neurosci. 24, 8068–8074.doi:10.1523/JNEUROSCI.2419-04.2004 (doi:10.1523/JNEUROSCI.2419-04.2004). Crossref, PubMed, Web of Science, Google Scholar - 195
Eljaschewitsch E., 2006 The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49, 67–79.doi:10.1016/j.neuron.2005.11.027 (doi:10.1016/j.neuron.2005.11.027). Crossref, PubMed, Web of Science, Google Scholar - 196
Navarrete M.& Araque A. . 2008 Endocannabinoids mediate neuron-astrocyte communication. Neuron 57, 883–893.doi:10.1016/j.neuron.2008.01.029 (doi:10.1016/j.neuron.2008.01.029). Crossref, PubMed, Web of Science, Google Scholar - 197
Albayram O., 2011 Role of CB1 cannabinoid receptors on GABAergic neurons in brain aging. Proc. Natl Acad. Sci. USA 108, 11 256–11 261.doi:10.1073/pnas.1016442108 (doi:10.1073/pnas.1016442108). Crossref, Web of Science, Google Scholar - 198
Mulder J., 2011 Molecular reorganization of endocannabinoid signalling in Alzheimer's disease. Brain 134, 1041–1060.doi:10.1093/brain/awr046 (doi:10.1093/brain/awr046). Crossref, PubMed, Web of Science, Google Scholar - 199
Cosenza-Nashat M. A., Bauman A., Zhao M. L., Morgello S., Suh H. S.& Lee S. C. . 2011 Cannabinoid receptor expression in HIV encephalitis and HIV-associated neuropathologic comorbidities. Neuropathol. Appl. Neurobiol. 37, 464–483.doi:10.1111/j.1365-2990.2011.01177.x (doi:10.1111/j.1365-2990.2011.01177.x). Crossref, PubMed, Web of Science, Google Scholar - 200
Tham C. S., Whitaker J., Luo L.& Webb M. . 2007 Inhibition of microglial fatty acid amide hydrolase modulates LPS stimulated release of inflammatory mediators. FEBS Lett. 581, 2899–2904.doi:10.1016/j.febslet.2007.05.037 (doi:10.1016/j.febslet.2007.05.037). Crossref, PubMed, Web of Science, Google Scholar - 201
Ortega-Gutierrez S., Molina-Holgado E.& Guaza C. . 2005 Effect of anandamide uptake inhibition in the production of nitric oxide and in the release of cytokines in astrocyte cultures. Glia 52, 163–168.doi:10.1002/glia.20229 (doi:10.1002/glia.20229). Crossref, PubMed, Web of Science, Google Scholar - 202
Sheng W. S., Hu S., Min X., Cabral G. A., Lokensgard J. R.& Peterson P. K. . 2005 Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia 49, 211–219.doi:10.1002/glia.20108 (doi:10.1002/glia.20108). Crossref, PubMed, Web of Science, Google Scholar - 203
Romero-Sandoval E. A., Horvath R., Landry R. P.& DeLeo J. A. . 2009 Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation. Mol. Pain 5, 25.doi:10.1186/1744-8069-5-25 (doi:10.1186/1744-8069-5-25). Crossref, PubMed, Web of Science, Google Scholar - 204
van der Stelt M., Veldhuis W. B., Maccarrone M., Bar P. R., Nicolay K., Veldink G. A., Di Marzo V.& Vliegenthart J. F. . 2002 Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol. Neurobiol. 26, 317–346.doi:10.1385/MN:26:2-3:317 (doi:10.1385/MN:26:2-3:317). Crossref, PubMed, Web of Science, Google Scholar - 205
Tapia-Arancibia L., Aliaga E., Silhol M.& Arancibia S. . 2008 New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res. Rev. 59, 201–220.doi:10.1016/j.brainresrev.2008.07.007 (doi:10.1016/j.brainresrev.2008.07.007). Crossref, PubMed, Google Scholar - 206
Zeng Y., Tan M., Kohyama J., Sneddon M., Watson J. B., Sun Y. E.& Xie C.-W. . 2011 Epigenetic enhancement of BDNF signaling rescues synaptic plasticity in aging. J. Neurosci. 31, 17 800–17 810.doi:10.1523/JNEUROSCI.3878-11.2011 (doi:10.1523/JNEUROSCI.3878-11.2011). Crossref, Web of Science, Google Scholar - 207
Grigorenko E., 2002 Assessment of cannabinoid induced gene changes: tolerance and neuroprotection. Chem. Phys. Lipids 121, 257–266.doi:10.1016/S0009-3084(02)00161-5 (doi:10.1016/S0009-3084(02)00161-5). Crossref, PubMed, Web of Science, Google Scholar - 208
Butovsky E., Juknat A., Goncharov I., Elbaz J., Eilam R., Zangen A.& Vogel Z. . 2005 In vivo up-regulation of brain-derived neurotrophic factor in specific brain areas by chronic exposure to Δ-tetrahydrocannabinol. J. Neurochem. 93, 802–811.doi:10.1111/j.1471-4159.2005.03074.x (doi:10.1111/j.1471-4159.2005.03074.x). Crossref, PubMed, Web of Science, Google Scholar - 209
Marsicano G., 2003 CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88.doi:10.1126/science.1088208 (doi:10.1126/science.1088208). Crossref, PubMed, Web of Science, Google Scholar - 210
Derkinderen P., Valjent E., Toutant M., Corvol J. C., Enslen H., Ledent C., Trzaskos J., Caboche J.& Girault J. A. . 2003 Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci. 23, 2371–2382. Crossref, PubMed, Web of Science, Google Scholar - 211
Berghuis P., 2005 Endocannabinoids regulate interneuron migration and morphogenesis by transactivating the TrkB receptor. Proc. Natl Acad. Sci. USA 102, 19 115–19 120.doi:10.1073/pnas.0509494102 (doi:10.1073/pnas.0509494102). Crossref, Web of Science, Google Scholar - 212
Aso E., Ozaita A., Valdizan E. M., Ledent C., Pazos A., Maldonado R.& Valverde O. . 2008 BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J. Neurochem. 105, 565–572.doi:10.1111/j.1471-4159.2007.05149.x (doi:10.1111/j.1471-4159.2007.05149.x). Crossref, PubMed, Web of Science, Google Scholar - 213
D'Souza D. C., Pittman B., Perry E.& Simen A. . 2009 Preliminary evidence of cannabinoid effects on brain-derived neurotrophic factor (BDNF) levels in humans. Psychopharmacology (Berl.) 202, 569–578.doi:10.1007/s00213-008-1333-2 (doi:10.1007/s00213-008-1333-2). Crossref, PubMed, Web of Science, Google Scholar - 214
Aguado T., 2005 The endocannabinoid system drives neural progenitor proliferation. FASEB J. 19, 1704–1706. Crossref, PubMed, Web of Science, Google Scholar - 215
Goncalves M. B., 2008 A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner. Mol. Cell Neurosci. 38, 526–536.doi:10.1016/j.mcn.2008.05.001 (doi:10.1016/j.mcn.2008.05.001). Crossref, PubMed, Web of Science, Google Scholar - 216
Marchalant Y., Brothers H. M.& Wenk G. L. . 2009 Cannabinoid agonist WIN-55,212-2 partially restores neurogenesis in the aged rat brain. Mol. Psychiatry 14, 1068–1069.doi:10.1038/mp.2009.62 (doi:10.1038/mp.2009.62). Crossref, PubMed, Web of Science, Google Scholar - 217
Hill M. N., Kambo J. S., Sun J. C., Gorzalka B. B.& Galea L. A. . 2006 Endocannabinoids modulate stress-induced suppression of hippocampal cell proliferation and activation of defensive behaviours. Eur. J. Neurosci. 24, 1845–1849.doi:10.1111/j.1460-9568.2006.05061.x (doi:10.1111/j.1460-9568.2006.05061.x). Crossref, PubMed, Web of Science, Google Scholar - 218
Oudin M. J., Hobbs C.& Doherty P. . 2011 DAGL-dependent endocannabinoid signalling: roles in axonal pathfinding, synaptic plasticity and adult neurogenesis. Eur. J. Neurosci. 34, 1634–1646.doi:10.1111/j.1460-9568.2011.07831.x (doi:10.1111/j.1460-9568.2011.07831.x). Crossref, PubMed, Web of Science, Google Scholar - 219
Mulder J., 2008 Endocannabinoid signaling controls pyramidal cell specification and long-range axon patterning. Proc. Natl Acad. Sci. USA 105, 8760–8765.doi:10.1073/pnas.0803545105 (doi:10.1073/pnas.0803545105). Crossref, PubMed, Web of Science, Google Scholar - 220
Aguado T., Romero E., Monory K., Palazuelos J., Sendtner M., Marsicano G., Lutz B., Guzman M.& Galve-Roperh I. . 2007 The CB1 cannabinoid receptor mediates excitotoxicity-induced neural progenitor proliferation and neurogenesis. J. Biol. Chem. 282, 23 892–23 898.doi:10.1074/jbc.M700678200 (doi:10.1074/jbc.M700678200). Crossref, Web of Science, Google Scholar - 221
Jin K., Xie L., Kim S. H., Parmentier-Batteur S., Sun Y., Mao X. O., Childs J.& Greenberg D. A. . 2004 Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice. Mol. Pharmacol. 66, 204–208.doi:10.1124/mol.66.2.204 (doi:10.1124/mol.66.2.204). Crossref, PubMed, Web of Science, Google Scholar - 222
Berrendero F., Romero J., Garcia-Gil L., Suarez I., De la Cruz P., Ramos J. A.& Fernandez-Ruiz J. J. . 1998 Changes in cannabinoid receptor binding and mRNA levels in several brain regions of aged rats. Biochim. Biophys. Acta 1407, 205–214.doi:10.1016/S0925-4439(98)00042-8 (doi:10.1016/S0925-4439(98)00042-8). Crossref, PubMed, Web of Science, Google Scholar - 223
Romero J., Berrendero F., Garcia-Gil L., de la Cruz P., Ramos J. A.& Fernandez-Ruiz J. J. . 1998 Loss of cannabinoid receptor binding and messenger RNA levels and cannabinoid agonist-stimulated [35S]guanylyl-5′O-(thio)-triphosphate binding in the basal ganglia of aged rats. Neuroscience 84, 1075–1083.doi:10.1016/S0306-4522(97)00552-6 (doi:10.1016/S0306-4522(97)00552-6). Crossref, PubMed, Web of Science, Google Scholar - 224
Canas P. M., Duarte J. M., Rodrigues R. J., Kofalvi A.& Cunha R. A. . 2009 Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiol. Aging 30, 1877–1884.doi:10.1016/j.neurobiolaging.2008.01.003 (doi:10.1016/j.neurobiolaging.2008.01.003). Crossref, PubMed, Web of Science, Google Scholar - 225
Liu P., Bilkey D. K., Darlington C. L.& Smith P. F. . 2003 Cannabinoid CB1 receptor protein expression in the rat hippocampus and entorhinal, perirhinal, postrhinal and temporal cortices: regional variations and age-related changes. Brain Res. 979, 235–239.doi:10.1016/S0006-8993(03)02872-5 (doi:10.1016/S0006-8993(03)02872-5). Crossref, PubMed, Web of Science, Google Scholar - 226
Wang L., Liu J., Harvey-White J., Zimmer A.& Kunos G. . 2003 Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc. Natl Acad. Sci. USA 100, 1393–1398.doi:10.1073/pnas.0336351100 (doi:10.1073/pnas.0336351100). Crossref, PubMed, Web of Science, Google Scholar - 227
Van Laere K., Goffin K., Casteels C., Dupont P., Mortelmans L., de Hoon J.& Bormans G. . 2008 Gender-dependent increases with healthy aging of the human cerebral cannabinoid-type 1 receptor binding using [(18)F]MK-9470 PET. Neuroimage 39, 1533–1541.doi:10.1016/j.neuroimage.2007.10.053 (doi:10.1016/j.neuroimage.2007.10.053). Crossref, PubMed, Web of Science, Google Scholar - 228
Maccarrone M., Attina M., Bari M., Cartoni A., Ledent C.& Finazzi-Agro A. . 2001 Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages. J. Neurochem. 78, 339–348.doi:10.1046/j.1471-4159.2001.00413.x (doi:10.1046/j.1471-4159.2001.00413.x). Crossref, PubMed, Web of Science, Google Scholar - 229
Maccarrone M., Valverde O., Barbaccia M. L., Castane A., Maldonado R., Ledent C., Parmentier M.& Finazzi-Agro A. . 2002 Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur. J. Neurosci. 15, 1178–1186.doi:10.1046/j.1460-9568.2002.01957.x (doi:10.1046/j.1460-9568.2002.01957.x). Crossref, PubMed, Web of Science, Google Scholar - 230
Buczynski M. W.& Parsons L. H. . 2010 Quantification of brain endocannabinoid levels: methods, interpretations and pitfalls. Br. J. Pharmacol. 160, 423–442.doi:10.1111/j.1476-5381.2010.00787.x (doi:10.1111/j.1476-5381.2010.00787.x). Crossref, PubMed, Web of Science, Google Scholar - 231
Reibaud M., Obinu M. C., Ledent C., Parmentier M., Bohme G. A.& Imperato A. . 1999 Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur. J. Pharmacol. 379, R1–R2.doi:10.1016/S0014-2999(99)00496-3 (doi:10.1016/S0014-2999(99)00496-3). Crossref, PubMed, Web of Science, Google Scholar - 232
Bilkei-Gorzo A., Racz I., Valverde O., Otto M., Michel K., Sastre M.& Zimmer A. . 2005 Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc. Natl Acad. Sci. USA 102, 15 670–15 675.doi:10.1073/pnas.0504640102 (doi:10.1073/pnas.0504640102). Crossref, Web of Science, Google Scholar - 233
Bohme G. A., Laville M., Ledent C., Parmentier M.& Imperato A. . 2000 Enhanced long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience 95, 5–7.doi:10.1016/S0306-4522(99)00483-2 (doi:10.1016/S0306-4522(99)00483-2). Crossref, PubMed, Web of Science, Google Scholar - 234
Di Marzo V. . 2011 Endocannabinoid signaling in the brain: biosynthetic mechanisms in the limelight. Nat. Neurosci. 14, 9–15.doi:10.1038/nn.2720 (doi:10.1038/nn.2720). Crossref, PubMed, Web of Science, Google Scholar - 235
Batkai S., Rajesh M., Mukhopadhyay P., Hasko G., Liaudet L., Cravatt B. F., Csiszar A., Ungvari Z.& Pacher P. . 2007 Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am. J. Physiol. Heart Circ. Physiol. 293, H909–H918.doi:10.1152/ajpheart.00373.2007 (doi:10.1152/ajpheart.00373.2007). Crossref, PubMed, Web of Science, Google Scholar - 236
Moore N. L., Greenleaf A. L., Acheson S. K., Wilson W. A., Swartzwelder H. S.& Kuhn C. M. . 2010 Role of cannabinoid receptor type 1 desensitization in greater tetrahydrocannabinol impairment of memory in adolescent rats. J. Pharmacol. Exp. Ther. 335, 294–301.doi:10.1124/jpet.110.169359 (doi:10.1124/jpet.110.169359). Crossref, PubMed, Web of Science, Google Scholar - 237
Trezza V., Cuomo V.& Vanderschuren L. J. . 2008 Cannabis and the developing brain: insights from behavior. Eur. J. Pharmacol. 585, 441–452.doi:10.1016/j.ejphar.2008.01.058 (doi:10.1016/j.ejphar.2008.01.058). Crossref, PubMed, Web of Science, Google Scholar - 238
Nahas G.& Latour C. . 1992 The human toxicity of marijuana. Med. J. Austr. 156, 495–497. Crossref, PubMed, Web of Science, Google Scholar - 239
Paradisi A., Oddi S.& Maccarrone M. . 2006 The endocannabinoid system in ageing: a new target for drug development. Curr. Drug Targets 7, 1539–1552. Crossref, PubMed, Web of Science, Google Scholar - 240
Marchalant Y., Brothers H. M.& Wenk G. L. . 2008 Inflammation and aging: can endocannabinoids help? Biomed. Pharmacother. 62, 212–217.doi:10.1016/j.biopha.2008.02.004 (doi:10.1016/j.biopha.2008.02.004). Crossref, PubMed, Web of Science, Google Scholar - 241
Bisogno T.& Di Marzo V. . 2010 Cannabinoid receptors and endocannabinoids: role in neuroinflammatory and neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 9, 564–573. Crossref, PubMed, Web of Science, Google Scholar - 242
Micale V., Mazzola C.& Drago F. . 2007 Endocannabinoids and neurodegenerative diseases. Pharmacol. Res. 56, 382–392.doi:10.1016/j.phrs.2007.09.008 (doi:10.1016/j.phrs.2007.09.008). Crossref, PubMed, Web of Science, Google Scholar - 243
Fernandez-Ruiz J. . 2009 The endocannabinoid system as a target for the treatment of motor dysfunction. Br. J. Pharmacol. 156, 1029–1040.doi:10.1111/j.1476-5381.2008.00088.x (doi:10.1111/j.1476-5381.2008.00088.x). Crossref, PubMed, Web of Science, Google Scholar - 244
Fernandez-Ruiz J., Garcia C., Sagredo O., Gomez-Ruiz M.& de Lago E. . 2010 The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin. Ther. Targets 14, 387–404.doi:10.1517/14728221003709792 (doi:10.1517/14728221003709792). Crossref, PubMed, Web of Science, Google Scholar - 245
Karl T., Cheng D., Garner B.& Arnold J. C. . 2012 The therapeutic potential of the endocannabinoid system for Alzheimer's disease. Expert Opin. Ther. Targets 16, 407–420.doi:10.1517/14728222.2012.671812 (doi:10.1517/14728222.2012.671812). Crossref, PubMed, Web of Science, Google Scholar - 246
Ramirez B. G., Blazquez C., Gomez del Pulgar T., Guzman M.& de Ceballos M. L. . 2005 Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J. Neurosci. 25, 1904–1913.doi:10.1523/JNEUROSCI.4540-04.2005 (doi:10.1523/JNEUROSCI.4540-04.2005). Crossref, PubMed, Web of Science, Google Scholar - 247
Martin-Moreno A. M., 2012 Prolonged oral cannabinoid administration prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J. Neuroinflammation 9, 8.doi:10.1186/1742-2094-9-8 (doi:10.1186/1742-2094-9-8). Crossref, PubMed, Web of Science, Google Scholar - 248
Aso E., Palomer E., Juves S., Maldonado R., Munoz F. J.& Ferrer I. . 2012 CB1 agonist ACEA protects neurons and reduces the cognitive impairment of AbetaPP/PS1 mice. J. Alzheimer's Dis. 30, 439–459. Crossref, PubMed, Web of Science, Google Scholar - 249
Walther S., Mahlberg R., Eichmann U.& Kunz D. . 2006 Δ-9-tetrahydrocannabinol for nighttime agitation in severe dementia. Psychopharmacology (Berl.) 185, 524–528.doi:10.1007/s00213-006-0343-1 (doi:10.1007/s00213-006-0343-1). Crossref, PubMed, Web of Science, Google Scholar - 250
Carroll C. B., Zeissler M. L., Hanemann C. O.& Zajicek J. P. . 2012 Δ(9)-THC exerts a direct neuroprotective effect in a human cell culture model of Parkinson's disease. Neuropathol. Appl. Neurobiol.doi:10.1111/j.1365-2990.2011.01248.x (doi:10.1111/j.1365-2990.2011.01248.x). Crossref, PubMed, Web of Science, Google Scholar - 251
Chung E. S., Bok E., Chung Y. C., Baik H. H.& Jin B. K. . 2012 Cannabinoids prevent lipopolysaccharide-induced neurodegeneration in the rat substantia nigra in vivo through inhibition of microglial activation and NADPH oxidase. Brain Res. 1451, 110–116.doi:10.1016/j.brainres.2012.02.058 (doi:10.1016/j.brainres.2012.02.058). Crossref, PubMed, Web of Science, Google Scholar - 252
Sieradzan K. A., Fox S. H., Hill M., Dick J. P., Crossman A. R.& Brotchie J. M. . 2001 Cannabinoids reduce levodopa-induced dyskinesia in Parkinson's disease: a pilot study. Neurology 57, 2108–2111.doi:10.1212/WNL.57.11.2108 (doi:10.1212/WNL.57.11.2108). Crossref, PubMed, Web of Science, Google Scholar - 253
Carroll C. B., 2004 Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology 63, 1245–1250.doi:10.1212/01.WNL.0000140288.48796.8E (doi:10.1212/01.WNL.0000140288.48796.8E). Crossref, PubMed, Web of Science, Google Scholar - 254
Mesnage V., 2004 Neurokinin, B., neurotensin, and cannabinoid receptor antagonists and Parkinson disease. Clin. Neuropharmacol. 27, 108–110.doi:10.1097/00002826-200405000-00003 (doi:10.1097/00002826-200405000-00003). Crossref, PubMed, Web of Science, Google Scholar - 255
Bilsland L. G.& Greensmith L. . 2008 The endocannabinoid system in amyotrophic lateral sclerosis. Curr. Pharm. Des. 14, 2306–2316.doi:10.2174/138161208785740081 (doi:10.2174/138161208785740081). Crossref, PubMed, Web of Science, Google Scholar - 256
Pazos M. R., Sagredo O.& Fernandez-Ruiz J. . 2008 The endocannabinoid system in Huntington's disease. Curr. Pharm. Des. 14, 2317–2325.doi:10.2174/138161208785740108 (doi:10.2174/138161208785740108). Crossref, PubMed, Web of Science, Google Scholar - 257
Sagredo O., Pazos M. R., Satta V., Ramos J. A., Pertwee R. G.& Fernandez-Ruiz J. . 2011 Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington's disease. J. Neurosci. Res. 89, 1509–1518.doi:10.1002/jnr.22682 (doi:10.1002/jnr.22682). Crossref, PubMed, Web of Science, Google Scholar - 258
Blazquez C., 2011 Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain 134, 119–136.doi:10.1093/brain/awq278 (doi:10.1093/brain/awq278). Crossref, PubMed, Web of Science, Google Scholar - 259
Arevalo-Martin A., Vela J. M., Molina-Holgado E., Borrell J.& Guaza C. . 2003 Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J. Neurosci. 23, 2511–2516. Crossref, PubMed, Web of Science, Google Scholar - 260
Bilsland L. G., Dick J. R., Pryce G., Petrosino S., Di Marzo V., Baker D.& Greensmith L. . 2006 Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. FASEB J. 20, 1003–1005.doi:10.1096/fj.05-4743fje (doi:10.1096/fj.05-4743fje). Crossref, PubMed, Web of Science, Google Scholar - 261
Ramil E., 2010 The cannabinoid receptor 1 gene (CNR1) and multiple sclerosis: an association study in two case-control groups from Spain. Mult. Scler. 16, 139–146.doi:10.1177/1352458509355071 (doi:10.1177/1352458509355071). Crossref, PubMed, Web of Science, Google Scholar - 262
Rog D. J., Nurmikko T. J., Friede T.& Young C. A. . 2005 Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 65, 812–819.doi:10.1212/01.wnl.0000176753.45410.8b (doi:10.1212/01.wnl.0000176753.45410.8b). Crossref, PubMed, Web of Science, Google Scholar - 263
Zajicek J., Fox P., Sanders H., Wright D., Vickery J., Nunn A.& Thompson A. . 2003 Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 362, 1517–1526.doi:10.1016/S0140-6736(03)14738-1 (doi:10.1016/S0140-6736(03)14738-1). Crossref, PubMed, Web of Science, Google Scholar - 264
Collin C., Davies P., Mutiboko I. K.& Ratcliffe S. . 2007 Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis. Eur. J. Neurol. 14, 290–296.doi:10.1111/j.1468-1331.2006.01639.x (doi:10.1111/j.1468-1331.2006.01639.x). Crossref, PubMed, Web of Science, Google Scholar - 265
Lakhan S. E.& Rowland M. . 2009 Whole plant cannabis extracts in the treatment of spasticity in multiple sclerosis: a systematic review. BMC Neurol. 9, 59–10.doi:10.1186/1471-2377-9-59 (doi:10.1186/1471-2377-9-59). Crossref, PubMed, Web of Science, Google Scholar - 266
Wade D. T., Makela P. M., House H., Bateman C.& Robson P. . 2006 Long-term use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Mult. Scler. 12, 639–645.doi:10.1177/1352458505070618 (doi:10.1177/1352458505070618). Crossref, PubMed, Web of Science, Google Scholar