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The natural light cycle has profound effects on animals’ cognitive systems.
Its alteration owing to human activities, such as artificial light at night
(ALAN), affects the biodiversity of mammalian and avian species by impair-
ing their cognitive functions. The impact of ALAN on cognition, however,
has not been investigated in aquatic species, in spite of the common occur-
rence of this pollution along water bodies. We exposed eggs of a teleost fish
(the zebrafish Danio rerio) to ALAN and, upon hatching, we measured
larvae’ cognitive abilities with a habituation learning paradigm. Both control
and ALAN-exposed larvae showed habituation learning, but the latter
learned significantly slower, suggesting that under ALAN conditions, fish
require many more events to acquire ecologically relevant information. We
also found that individuals’ learning performance significantly covaried
with two behavioural traits in the control zebrafish, but ALAN disrupted
one of these relationships. Additionally, ALAN resulted in an average
increase in larval activity. Our results showed that both fish’s cognitive abil-
ities and related individual differences are negatively impacted by light
pollution, even after a short exposure in the embryonic stage.
1. Introduction
Artificial light at night (ALAN) is recognized as a one of the most pervasive
sources of pollution on Earth, with multiple reported negative effects on animals’
biology [1–3]. Among these, substantial literature indicates that humans display
cognitive impairments owing to ALAN [4–6]. Similar effects have been reported
for laboratory rodent models [7] and even more severe ones for wild avian popu-
lations, in which ALAN-mediated alterations in hormonal homeostasis hamper
cognitive functioning [8–11] (but see [12]). Considering the often-reported influ-
ence of individuals’ cognitive abilities on fitness (e.g. [13]), these records suggest
that ALAN might impact biodiversity via cognitive alteration.

As a significant proportion of human settlings are related to water bodies,
aquatic animals are also affected by ALAN [14–17]. It is estimated that 22%
of coastal areas worldwide are affected by light pollution [15] and linear fresh-
water bodies such as rivers and canals are often entirely affected owing to
streetlights [17]. Therefore, we can expect ALAN to impact aquatic species’ cog-
nition, as well. Previous reports found effects of ALAN on teleost fish
behaviours such as activity, boldness and preference for environments with
different illumination [18–20]. Yet, the potential impact of ALAN on fish cogni-
tion remains unknown. To fill this gap, we experimentally investigated whether
ALAN exposure affects cognitive abilities in a teleost fish.

We treated fish during their embryonic stages, which are intuitively more
susceptible to ALAN owing to the impossibility to actively avoid it and the
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sensitivity of the developing nervous system. We used the
zebrafish Danio rerio as our study species, which is particu-
larly useful to investigate cognitive abilities and their
plasticity during early development [21,22] and is considered
a general fish model [23,24]. After exposure to ALAN or con-
trol treatment, we assessed zebrafish cognitive abilities with a
habituation learning assay [25]. We also measured two be-
havioural traits (activity and startle response). Multiple
studies in fish have reported that individuals’ cognitive
traits covary with behavioural traits [26,27]. It has been
hypothesized that covariations with personality might help
maintain cognitive variation [28]. Additionally, these covaria-
tions might result from local adaptation to ecological
conditions, as suggested by different patterns shown by
populations from distinct habitats [29,30]. Considering that
similar relationships between traits are affected by environ-
mental stressors [31,32], it is important to consider the
covariation between cognition and behaviour to fully
understand the potential impact of ALAN.
0436
2. Material and methods
(a) Experimental treatments
Groups of 25 wild-type embryos obtained with a standard breed-
ing protocol (electronic supplementary material, S1) were
randomly assigned to one of 12 Petri dishes (Ø= 9 cm) within
2 h from spawning. The Petri dishes with the subjects were main-
tained under either ALAN (N = 6) or control condition (N = 6;
details in electronic supplementary material, S1) until testing. In
both conditions, a white LED strip (0.38Wm−2; 570 lx) provided
illumination 12 h per day (06.00–18.00 h). In the ALAN condition,
a single LED (0.008 Wm−2; 1.5 lx) was turned on during the night
phase (18.00–06.00 h), obtaining night illumination comparable to
that affecting aquatic species in urban rivers [33,34]. The eggs
began to hatch the third day post-fertilization (3 dpf). In contrast
with other species [35,36], we did not find ALAN effects on zebra-
fish eggs survival and hatching (electronic supplementary
material, S1). At 4 dpf, hatched larvae underwent testing for
behavioural and cognitive traits.

(b) Behavioural assays
The two behavioural traits (activity and startle response) were
analysed before the cognitive testing. The experimenter collected
available larvae (90 from the ALAN treatment and 85 from the
control treatment; total N = 175 larvae; replicate N = 6). Larvae
were moved individually into the wells of a 48-wells culture
plate (N = 4 plates overall). To assess the behavioural activity, a
tracking system recorded the distance moved by each subject
for each minute of testing, starting immediately after inserting
the plate, for a total time of 60 min.

The second behavioural trait, the startle response, was
measured after the behavioural activity measure ended. The
larvae were exposed to a sudden vibrational stimulation that
typically elicits an immediate startle response (i.e. increased
activity; [37]). We measured the startle response as the distance
moved in the second after the stimulation, and we also recorded
the occurrence of unresponsive larvae (distance moved = 0).
Details are provided in electronic supplementary material, S1.

(c) Habituation learning test
The subjects underwent a habituation learning assay based on
the reduction of the startle response elicited by repeated
vibrational stimulations [25,37] (electronic supplementary
material, S1). This test allows the earliest cognitive assessment
in zebrafish. It has been shown to be sensitive to alterations in
learning owing to pollutants even at 4 dpf [38], and can predict
cognitive abilities of older larvae (electronic supplementary
material, S1). The assay consisted of administering 25 additional
stimulations following the stimulation for the startle test. The
stimulations were always separated by a 1 s interval. Using the
distance moved by each subject after each stimulation, we calcu-
lated an index of activity reduction between each subsequent
stimulation and the first [38,39]. This index provided a measure
of habituation learning as the reduction in each individual’s
response to the repeated stimulation. Lower values of the index
indicated greater habituation learning performance.
3. Results
(a) ALAN increased activity
Activity was analysed in three temporal blocks according to
the observed trend (figure 1a). The activity peak in the first
minute was not affected by the treatment (linear mixed-effects
model, LMM: x21 ¼ 1:404, p = 0.236). In the following phase
(minutes 2–11) of increasing activity (main effect of time:
x21 ¼ 50:933, p < 0.001), the effect of the treatment approached
the threshold of statistical significance (x21 ¼ 3:708, p = 0.054),
while the interaction between treatment and time was not sig-
nificant (x21 ¼ 0:496, p = 0.481). In the last phase (minutes 12–
60), characterized by decreasing activity trend (x21 ¼ 307:259,
p < 0.001), the main effect of treatment was not significant
(x21 ¼ 2:658, p = 0.103). However, in the last phase, a significant
interaction between treatment and time indicated a transitory
higher activity of larvae from the ALAN treatment group
(x21 ¼ 21:052, p < 0.001).

In the startle test, the proportion of individuals that
responded did not significantly vary between the treatments
(ALAN treatment: 0.85; control treatment: 0.78; generalized
linear mixed-effects model, GLMM: x21 ¼ 1:806, p = 0.179).
In the responding subjects, the intensity of the startle did
not differ between the treatments (LMM: x21 ¼ 0:695,
p = 0.403; figure 1b).
(b) ALAN impaired learning abilities
Overall, the habituation index significantly decreased across
the stimulations, as expected owing to learning (stimulation:
LMM: x21 ¼ 168:894, p < 0.001; figure 1c). Compared to the
ALAN group, the control group showed a lower habituation
index (treatment: x21 ¼ 4:621, p = 0.032; figure 1c) and a
greater response reduction across stimulations (treatment ×
stimulation interaction: x21 ¼ 29:605, p < 0.001; figure 1c),
both effects indicating greater habituation learning in the
control group (figure 1c).
(c) ALAN affected covariations between behaviour and
cognition

In the control group, the habituation learning index was sig-
nificantly correlated with the behavioural activity (Kendall’s
T = 0.185, p = 0.032; figure 2a) and the startle response (Ken-
dall’s T = 0.178, p = 0.039; figure 2b). In the ALAN-exposed
larvae, habituation learning significantly correlated with
activity (Kendall’s T = 0.210, p = 0.008; figure 2c), but not
with startle response (Kendall’s T = 0.006, p = 0.942;
figure 2d ).
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Figure 1. Behavioural and cognitive alterations owing to the ALAN. (a) Activity measured as distance moved; (b) index of first response to the stimulation; (c)
habituation learning index. Data points and bars represent means and error bars represent standard errors; the stimulation ‘00 in (c) represents the index of the initial
reference startle.
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4. Discussion
ALAN pollution affects a significant proportion of aquatic
habitats [14–17], potentially exposing fish to the cognitive
impairments associated with altered light–dark cycles
described for land vertebrates [4,7,8]. We demonstrated that
fish larvae from experimental populations exposed to
ALAN exhibited reduced habituation learning. The impair-
ment was evident as a slower reduction of the startle
response after repeated stimulation [40]. For instance, in the
second stimulation, the control group responded approxi-
mately 75% less compared to the first stimulation, whereas
the ALAN group only showed a 25% response decrease.
The performance of the two experimental groups became
similar only after nine stimulations. While our laboratory
test is difficult to directly relate to a natural situation, the
treatment effect is not trivial: individuals exposed to ALAN
require many more events to acquire relevant information.
Habituation learning has been associated with several activi-
ties important for fitness, including antipredator responses
[41,42], social relationships [43], and human–wildlife inter-
actions [44,45]. Therefore, the impairment owing to ALAN
might impact fitness in wild fish populations. For
instance, reduced habituation might prevent learning to dis-
cern predator from non-predator species [46], ultimately
explaining the increased predation suffered by juvenile
marine fish exposed to ALAN [19,47]. ALAN might also
affect other cognitive abilities, calling for investigations on
adult fish, which can undergo more complex tests.

A second finding of our experiment involved the two be-
havioural traits and their relationship with cognition. In line
with a study on the rockfish Girella laevifrons [48], zebrafish
exposed to ALAN were more active than control subjects.
This effect has been attributed to the loss of behavioural rhyth-
micity derived from night illumination [48]. Conversely, under
ALAN, guppies, Poecilia reticulata, showed no significant
activity alterations [18], and bluegill, Lepomis macrochirus
showed activity reduction [49], suggesting a species-specific
effect on behavioural activity. These interspecific differences
might also be owing to different responses to the assay. In
our zebrafish, the effect on activity was mediated by time,
being initially more marked and reducing after approximately
30 min. Therefore, we may have measured acclimation to the
novel environment rather than plain activity. Regarding the
second behavioural trait examined, the startle response, we
detected no ALAN-related effects.

Critically, we found significant correlations between the
two behavioural traits and individuals’ learning performance
in the control group, whereas in the ALAN group, we
detected only one of these covariations. Relationships
between cognition and behaviour have been increasingly
reported in the literature [26,27], and are likely part of a
more extended set of covariations involving physiological
and life-history traits [50]. An earlier study has
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also reported ALAN-driven disruption of the relationship
between behaviour and metabolism in hermit crabs [51].
While the evolutionary significance of the covariation
between cognition and behaviour is not fully understood,
they might be linked to fundamental life-history trade-
offs as shown for other covariations [52,53]. Under this scen-
ario, when a stressor such as ALAN disrupts the covariation,
it may alter how individuals optimize their investment across
various traits. Moreover, this intraspecific variability might be
related to local adaptation (e.g. [29]). If this possibility is con-
firmed by future studies, fitness effects of covariance
disruption owing to ALAN will deserve attention in wild fish
populations. The scenario might be gloomier if we postulate
that this, as well as other covariations between traits, could
also be altered by additional, co-occurring anthropogenic
stressors [32,54,55]. Lastly, the covariance between behaviour
and learning may be involved in mechanisms of invasive
species success [56], suggesting the importance of studying
ALAN effects in this context.

Our focus on the embryonic stage has led to further
insights into the impacts of ALAN on teleost fishes. First, we
can conclude that even a short exposure to ALAN might
induce phenotypic changes, at least during the earlier develop-
ment. Owing to behavioural and cognitive alterations, fish
hatching from eggs laid in habitats affected by ALAN could
suffer negative consequences from their first day of life, often
the onset of a critical period for survival. Second, the observed
effects were directly caused by individuals’ experience without
contribution of parental effects, which remain nevertheless
interesting to investigate as reported for various cognitive
functions [57,58]. An unanswered question is whether
ALAN-mediated alterations persist for the entire life. Studies
with various approaches suggest that stressors can determine
long-lasting cognitive plasticity in fish [59,60]. If this will be
confirmed for ALAN, its impacts could carry over into later
life stages, even if later life stages move to habitats without
light pollution. The adult fish brain, however, is probably the
most plastic among vertebrates [61] and we cannot exclude
continuous plasticity in response to changing light conditions.

Overall, this study highlighted the negative effects of
early life ALAN exposure on fish cognition and its covaria-
tion with behavioural traits. Our findings advocate for
investigation of other fish species in their early ontogenetic
stages, as studies in zebrafish have been often predictive for
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other freshwater and marine teleosts [23,24]. Similarly, cogni-
tive impairments from embryonic ALAN exposure might
occur in other aquatic taxa such as invertebrates and
amphibians.
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