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This work addresses the autonomous organization of biological systems. It

does so by considering the boundaries of biological systems, from individual

cells to Home sapiens, in terms of the presence of Markov blankets under the

active inference scheme—a corollary of the free energy principle. A Markov

blanket defines the boundaries of a system in a statistical sense. Here we con-

sider how a collective of Markov blankets can self-assemble into a global

system that itself has a Markov blanket; thereby providing an illustration

of how autonomous systems can be understood as having layers of nested

and self-sustaining boundaries. This allows us to show that: (i) any living

system is a Markov blanketed system and (ii) the boundaries of such systems

need not be co-extensive with the biophysical boundaries of a living organ-

ism. In other words, autonomous systems are hierarchically composed of

Markov blankets of Markov blankets—all the way down to individual

cells, all the way up to you and me, and all the way out to include elements

of the local environment.
1. Introduction
Organisms show a tendency to self-organize into a coherent whole despite them

comprising a multiplicity of nested systems. They also continuously work to

preserve their individual unity, thus tending to maintain a boundary that sep-

arates their internal states from their external milieu ([1]; see also [2]). These

tendencies speak to the autonomous organization of biological systems.

This paper addresses the self-organization of autonomous organization in

biological systems by asking how Markov blankets of living systems self-

organize via active inference—a corollary of the free energy principle. A

Markov blanket defines the boundaries of a system (e.g. a cell or a multi-cellular

organism) in a statistical sense. It is a statistical partitioning of a system into

internal states and external states, where the blanket itself consists of the

states that separate the two. The states that constitute the Markov blanket can

be further partitioned into active and sensory states. Here, states stand in for

any variable that locates the system at a particular point in state space; for

example, the position and momentum of all the particles constituting a thermo-

dynamic system—right through to every detail of neuronal activity that might

describe the state of the brain. In the thermodynamic example, internal states

would correspond to the thermodynamic system (e.g. a gas) in question; the

external states would constitute a heat bath; and the Markov blanket could

be the states of a container that mediates (directed) exchange between the
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heat bath and internal states. For an embodied central ner-

vous system, the active and sensory states correspond to

the states of all actuators or effectors and sensory organs,

respectively.

Statistically, the existence of a Markov blanket means

external states are conditionally independent of internal

states, and vice versa, as internal and external states can

only influence each other via sensory and active states. The

presence of the conditional independencies implied by a

Markov blanket induces—as shown in Friston [3]—active

inference. Active inference, in its simplest formulation,

describes the tendency of random dynamical systems to mini-

mize (on average) their free energy, where free energy is an

upper bound on (negative) marginal likelihood or evidence

(i.e. the probability of finding the system in a particular

state, given the system in question). This implies that the

kind of self-organization of Markov blankets we consider

results in processes that work entirely to optimize evidence,

namely self-evidencing dynamics underlying the auton-

omous organization of life, as we know it. In Bayesian

statistics, the evidence is known as ‘model’ evidence, where

we can associate the internal states with a model of the

external states.

We approach the self-organization of Markov blankets

and processes of model optimization that ensue in terms of

an optimality principle; namely, the minimization of free

energy [4]. Free energy was classically defined in terms of

thermodynamic principles, denoting a measure of energy

available to a system to do useful work (e.g. maintaining a

particular speed in a Watt governor or photosynthesis in

plants). The free energy we refer to here is an information-

theoretic analogue of the thermodynamic quantity. Free

energy is a bound on ‘surprisal’ (or negative model evidence)

or more simply ‘surprise’. The time average of surprise is

entropy (a measure of uncertainty), so the minimization of

free energy through time ensures that entropy is bounded.

One can understand surprisal as a measure of how unlikely

an observation would be by associating a system’s sensory

state with an observation or sensory sample [5]. Reducing

free energy is therefore the same as optimizing Bayesian

model evidence (negative surprisal) for a model (the

system) reflected in the probability distributions over sensory

data sampled by a system [6]. Crucially, this allows one to

explain self-assembly of Markov blankets in terms of approxi-

mate Bayesian inference and probabilistic beliefs that are

implicit in a system’s interactions with its local surroundings

[7]. This teleological (Bayesian) interpretation of dynamical

behaviour in terms of optimization allows us to think about

any system that possesses a Markov blanket as some rudi-

mentary (or possibly sophisticated) ‘agent’ that is

optimizing something; namely, the evidence for its own exist-

ence. This means we can regard the internal states (and their

Markov blanket) as, in some sense, autonomous.

In this paper, we take the internal and active states of a

Markov blanket to minimize free energy via active inference.

The scope of this formulation is extremely broad. It applies to

systems such as coupled pendulums that one would not

readily recognize as autonomous. This raises the question

of whether the Markov blanket formulation of biological sys-

tems is over-broad and thereby explanatorily empty with

respect to autonomy. We show that this worry can be

handled by formulating a novel distinction between ‘mere

active inference’ and ‘adaptive active inference’, as only the
latter enables modulation of an organism’s sensorimotor

coupling to its environment. From adaptive active inference

we argue that organisms comprise a multiplicity of Markov

blankets, the boundaries of which are neither fixed nor

stable. We do this by suggesting that an ensemble of

Markov blankets can self-organize into a global or macro-

scopic system that itself has a Markov blanket. This allows

us to provide an illustration of how autonomous systems

are realized by multiple self-evidencing and nested Markov

blankets. This construction implies that a living system is

composed of Markov blankets of Markov blankets [8]—

reaching all the way down to cellular organelles and DNA

[9] and all the way out to elements of the environment [10].

The paper is organized as follows. In §2 we introduce the

Markov blanket concept in the context of active inference

under the free energy principle. In §3 we distinguish between

mere active inference and adaptive active inference. It is

argued that only the latter kind of active inference enables

autonomous organization. In §4 we turn to develop the

notion of nested Markov blankets, i.e. Markov blankets of

Markov blankets.
2. The Markov blanket and active inference
A Markov blanket constitutes (in a statistical sense) a bound-

ary that sets something apart from that which it is not. Hence,

it is a statistical partitioning of states into internal and

external states that are separated by a Markov blanket—

comprising active and sensory states. This shows that internal

and external states are conditionally independent, as they can

only influence one another via active and sensory states. For-

mally, a Markov blanket renders a set of states, internal and

external states, conditionally independent of one another.

That is, for any variable A, A is conditionally independent

of B, given another variable, C, if and only if the probability

of A and B given C can be written as p(AjC) and p(BjC ). In

other words, A is conditionally independent of B given C if,

when C is known, knowing A provides no further infor-

mation about B [11]. This maps on to the Markov blanket

shown in figure 1.

In this figure, the Markov blanket for node f5g is the

union of its parents f2,3g, the children of f5g, which are

f6,7g, and the parents’ children f4g. Hence, f5g ¼ f6,7g U

f2,3g U f4g ¼ f2,3,4,6,7g. The union of f5g does not include

f1g. This highlights that f1g and f5g are conditionally inde-

pendent given f2,3,4,6,7g. It also illustrates that, once the

union of f5g is given, the probability of f5g will not be

affected by the probability of f1g. Formally, f5g is con-

ditionally independent of f1g given f2,3,4,6,7g, if P(f5gjf1g,
f2,3,4,6,7g) ¼ P(f5gjf2,3,4,6,7g). This means that, once all

the neighbouring variables for f5g are known, knowing the

state of f1g provides no additional information about the

state of f5g. It is this kind of statistical neighbourhood for

f5g that is called a Markov blanket [12].

The cell is an intuitive example of a living system with a

Markov blanket. Without possessing a Markov blanket a cell

would no longer be, as there would be no way by which to

distinguish it from everything else. This is to say that, if the

Markov blanket of a cell deteriorates, there will be no evi-

dence for its existence, and it will cease to exist [13]. This

means that the identity of—or the evidence for—any given

biological system is conditioned on it having a Markov
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Figure 1. A schematic depiction of a Markov blanket with full conditionals.
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blanket. So the biological world is a world populated by

Markov blankets.

Biological systems have a capacity to maintain low-

entropy distributions over their internal states (and their

Markov blanket) despite living their lives in changing and

uncertain circumstances. This means that biological systems

can be cast as engaging in active inference, given that internal

and active states of a system with a Markov blanket can be

shown to maintain the structural and functional integrity of

such a system. To gain some intuition for the motivations

behind this formulation, consider that the independencies

established by a Markov blanket realize a co-dependence

between internal states and external states conditioned on

sensory and active states.

The partitioning rule governing Markov blankets illus-

trates that external states—which are ‘hidden’ behind the

Markov blanket—cause sensory states, which influence, but

are not themselves influenced by, internal states, while

internal states cause active states, which influence, but are

not themselves influenced by, external states [7]. Internal

and external states can therefore be understood as influencing

one another in a continuous and reciprocal fashion, given

dependencies between sensory and active states. The inde-

pendencies established by a Markov blanket are then

suggestive of an elemental form of active inference, where

internal and active states are directly involved in maintaining

the structural and functional integrity of the Markov blanket

[7]. This is because active inference rests on the assumption

that action—upon which perception depends—minimizes

uncertainty or surprise about the causes of an agent’s sensory

states [14]. Active inference therefore places an upper bound

on surprise, i.e. action drives an organism’s internal states

toward a free energy minima. We develop this point in the

remainder of this section.

Active inference is a cornerstone of the free energy prin-

ciple. This principle states that for organisms to maintain

their integrity they must minimize variational free energy.

Variational free energy bounds surprise because the former

can be shown to be either greater than or equal to the latter.

It follows that any organism that minimizes free energy

thereby reduces surprise—which is the same as saying that

such an organism maximizes evidence for its own model,

i.e. its own existence. In other words, self-evidencing behav-

iour is equivalent to statistical inference [11]. To see this,

consider, first,

Fðs, a, rÞ ¼ � ln pðs, a jmÞ þDKL½qðwjrÞ k pðwjs, aÞ�,

where s refers to sensory states, a to active states and r to

internal states. The notation F(s, a, r) denotes the variational
free energy of internal states and their Markov blanket,

� ln pðs, ajmÞ refers to the negative log probability or

surprise conditioned on a generative model and

DKL ½qðwjrÞ k pðwjs, aÞ� is the Kullback–Leibler (KL) diver-

gence between two probability densities: the variational

density, q(wjr), and the posterior density, p(wjs, a).

Crucially, this equality gives a Bayesian interpretation of

variational free energy. The negative log likelihood or prob-

ability is the same as surprise, while the KL divergence

measures the discrepancy between the variational density

and the true posterior. Minimizing free energy by changing

internal states can only reduce the divergence between beliefs

about external states (the variational density) and the true

posterior density given the states of the Markov blanket.

We can think of this as a form of perception. Minimizing

free energy by changing the active states can only change

the surprise or model evidence. This constitutes a form of

action that underwrites self-evidencing. We now consider

this in more detail.

This interpretation means that changing internal states is

equivalent to inferring the most probable, hidden causes of

sensory signals in terms of expectations about states of the

environment. Hidden causes are called hidden because they

can only be ‘seen’ indirectly by internal states through the

Markov blanket via sensory states. As an example, consider

that the most well-known method by which spiders catch

prey is via their self-woven, carefully placed and sticky

web. Common for web- or niche-constructing spiders is that

they are highly vibration sensitive. If we associate vibrations

with sensory observations, then it is only in an indirect sense

that one can meaningfully say that spiders have ‘access’ to the

hidden causes of their sensory world—i.e. to the world of

flies and other edible ‘critters’. It is in this sense that one

should understand a Markov blanket as establishing a stat-

istical boundary separating internal states from external

states. To then act on inferred states of the world means to

actively secure evidence that I am what I am; namely, a

critter-eating creature.

In a neurobiological setting, Markov blankets can be

‘found’ at each level of the brain’s hierarchy, which allows

us to associate the brain with a hierarchical Bayesian net-

work—one that is organized such that higher levels in the

cortical hierarchy infer (i.e. predict) the states at the level

below, all ‘the way down to the changing states of our sen-

sory receptors and physical actuators’ [15, p. 5]. It has

proved very helpful to think of exchanges between internal

and external states (across the Markov blanket) in terms of

a variational free energy-minimizing scheme called predictive

coding. In these formulations, free energy can be associated

with prediction errors; namely, the difference between sen-

sory states and their prediction is based upon internal

states. In predictive coding, predictions are made from the

‘top down’, while prediction error or local surprise is propa-

gated up the hierarchy until any residual error signal is

eliminated through updating or parametrizing Bayesian

beliefs. This, in turn, enables a system’s inferences to acquire

a ‘grip’ on the hidden causes of sensory input [16,17].

If we imagine the brain as a hierarchical or nested set of

Markov blankets, then the Markov blanket at any particular

level in the brain’s hierarchy must comprise active and sen-

sory states, where the active states influence lower levels

(i.e. external peripheral Markov blankets) and can be

regarded as predictions, while prediction errors play the
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role of sensory states that influence the higher levels (i.e.

internal Markov blankets). This coupled exchange of influ-

ences minimizes prediction errors at all levels of the

hierarchy; thereby constituting (an internalized) form of

active inference and implicit free energy minimization.

More generally, belief parametrization is captured by the

KL divergence above. This is a measure of the discrepancy

between current beliefs (the variational density) and the

true posterior distribution. Specifically, it is a measure of

the residual (or relative) surprise between the two probability

distributions. When the free energy is minimized, the vari-

ational density is approximately equal to the posterior

distribution. The better this approximation, the smaller the

divergence. This means that the variational density approxi-

mates exactly the same quantity that Bayesian inference

seeks to optimize. This is made clear through the following

expression of Bayes’ rule:

pðwjsÞ ¼ pðsjwÞpðwÞ
pðsÞ :

Bayes’ rule states that the (posterior) probability, p, of a

state, w, given some data (sensations), s, is equal to the prob-

ability of s given w multiplied by the prior probability of w,

divided by the prior probability of s. The relationship

between free energy minimization and Bayes’ rule demon-

strates that internal states and their Markov blanket can be

understood as engaging in approximate Bayesian infer-

ence—optimizing their (approximate) posterior beliefs over

a model as new sensations are experienced ([18]; for a critique

see [15]). This is the Bayesian brain hypothesis [4,19,20].

Active inference reminds us that it is not only internal

(e.g. neural) states that perform approximate Bayesian infer-

ence, but also active states. This embeds the view of the

brain as a Bayesian inference machine within the context of

embodied (active) inference, formularizing action as the pro-

cess of selectively sampling sensory data to minimize

surprise about their hidden causes ([21]; see also [16,22,23]).

To see this, consider that the relative entropy specified by

the KL divergence cannot be less than zero. The simplest

and most intuitive way by which to illustrate this is that the

KL divergence measures how different two distributions

are. This means that its minimum should be the point at

which the two distributions are equal, i.e. that the difference

between the two probability distributions is zero. Mathemat-

ically one can show that free energy is an upper bound on

surprise by considering the following inequality:

Fðs, a, rÞ � � ln pðs, ajmÞ )

Et½Fðs, a, rÞ� � Et½� ln pðs, ajmÞ� ¼ H½pðs, ajmÞ�:

This inequality states that variational free energy bounds

surprise, which follows from the fact that the KL divergence

cannot be less than zero, i.e. the smallest difference is zero

itself. This inequality can also be shown to follow from Jen-

sen’s inequality (see appendix A). Moreover, this implies

()): given that the expected (E) surprise averaged over

time is equal to Shannon entropy, H½pðs, ajmÞ�, over internal

states and their Markov blanket given a generative model,

it follows that the expected variational free energy averaged

over time, Et½Fðs, a, rÞ�, of internal states and their Markov

blanket is a bound on entropy. This inequality has several

non-trivial implications. We emphasize two below.
First, any system that minimizes entropy by acting to

minimize uncertainty about the hidden causes of its sen-

sations must have a model of the kind of regularities it

expects to encounter in its environment. This means that,

over (phylogenetic and ontogenetic) time, an organism will

become a model of its environment (note that natural selec-

tion is a form of Bayesian model selection, which will

minimize free energy over an evolutionary time scale)—an

upshot that is entirely consistent with Conant & Ashby’s

[24] Good Regulator Theorem. In other words, it suggests

that regularities in the environment of an organism become

embodied in the organism—if the organism or species per-

sists. Under the free energy principle, this implies that

organisms are close to optimal models of their local sur-

roundings, i.e. their niche. Organisms become close to

optimal models by minimizing variational free energy,

which bounds the evidence for each phenotype or individual

model [25]. This does not imply that an agent must (some-

how) construct an internal model (i.e. representation) of its

outer environment. It simply means that an agent becomes

a statistical model of its niche in the sense of coming to

embody statistical regularities of its world in its physical

and functional composition.

Hence, one should recognize that the morphology, bio-

physical mechanics and neural architecture of the organism

all constitute an agent’s model, and that these parameters

(or parts) can be tuned and augmented by selection, learning

and experience [5]. Consequently, one should not confuse the

idea that organisms are models of their niche with the

additional view that organisms encode or represent their

niche in virtue of being a model. A simple example that illus-

trates this point is that it is possible to consider the

physiological make-up of a fish, say, as a model of the fluid

dynamics and other elements that constitute its aquatic

environment—its internal dynamics depends on the

dynamics of the niche [26]. It is in this embodied sense that

one should understand the claim that an organism is a

model. In other words, an organism does not merely have

a model of its world; rather, it is a model. The model is

therefore the entire phenotype [3,21–23,27].

Second, active inference implies that agents are partly

responsible for generating the sensory evidence that they

garner for themselves. Active inference thus captures the

idea that Clark [28], following Lungarella & Sporns [29],

calls information self-structuring. Information self-structuring

highlights the important idea that:
[T]he agent’s control architecture (e.g. nervous system) attends to
and processes streams of sensory stimulation, and ultimately
generates sequences of motor actions which in turn guide the
further production and selection of sensory information. [In
this way] ‘information structuring’ by motor activity and ‘infor-
mation processing’ by the neural system are continuously
linked to each other through sensorimotor loops. ([29, p. 25];
quoted in [28, p. 18])
We understand this to imply that an agent is able to minimize

free energy, and therefore surprise, by actively sampling and

changing the hidden causes of its environment. This means

that biological systems have expectations and make infer-

ences about the causal regularities and make-up of the

environment in which they are situated [30]. In short, given

enough time, agents will come to be the authors of the

external states (i.e. environments) that reciprocate with



Figure 2. Two oscillating (i.e. coupled random dynamical) systems, A and B,
suspended from a beam that is itself able to move. The two arrows illustrate
the coupling between pendulum A and pendulum B (for additional discussion,
see [16]).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170792

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 D

ec
em

be
r 

20
24

 

predictable, uncertainty resolving sensory feedback of exactly

the right sort to sustain cycles of self-evidencing.
3. The Markov blanket and adaptive active
inference

All Markov blanketed systems can be associated with active

inference. In this paper, we wish to not only develop this

idea but also analyse what properties a Markov blanketed

system must instantiate for it to be autonomous. It is tempt-

ing to think that if a system has a Markov blanket—which

induces an elemental form of active inference—then that

system is by definition an autonomous system. We want to

suggest that it be unwise to yield to such a temptation.

3.1. The Markov blanket—mere active inference
Any Markov blanketed system can be shown to engage in

active inference in virtue of its separation of internal and

external states (via sensory and active states). Here we con-

sider a very simple example of two coupled random

dynamical systems, exemplified by a set of coupled Huygens’

pendulums (figure 2).

The beam functions as a Markov blanket. This means that

the motions of the two pendulums are statistically indepen-

dent of one another conditioned on the motion of the

beam. If one were to suspend motion of the beam there

would be no synchronization between the pendulums. Thus

the two pendulums would cease to be dynamically coupled.

Furthermore, each pendulum can be understood as a genera-

tive model of the other, where the probabilistic mapping from

hidden causes (the dynamics of the black clock) to sensory

observations (for the grey clock) is mediated by the beam,

i.e. the Markov blanket states of the clocks. Note that we

are using the terms ‘sensory’ and ‘active’ states in an extre-

mely broad sense, associating active states with position

and sensory states with velocity or motion.1 This allows us

to minimally describe the clocks as engaging in active infer-

ence, although of a fairly simple form. We call this mere
active inference.

What warrants this claim is that it is possible to cast gen-

eralized synchrony between two coupled pendulums in

terms of mutual information. In information theory, mutual
information is the KL divergence between the marginal den-

sities over two sets of variables and the joint distribution.

When the two sets of variables are independent, the joint dis-

tribution becomes the product of the marginals and the KL

divergence or mutual information falls to zero. In virtue of

the fact that the states of our pendulums have high mutual

information they are effectively obliged to actively infer

each other; such that, given the (internal) states of one pendu-

lum, one could infer the (internal) states of the other, which,

of course, are the external states of the first. It is in this sense

that one can conceive of the two pendulums as engaging in

active (Bayesian) inference.
3.2. The Markov blanket—adaptive active inference
The dynamics of Huygens’ pendulums exemplifies a Markov

chain over time. A Markov chain is a special case of a Markov

blanket, in which the dependencies among states are

restricted to a chain of successive influences with no recipro-

cal influences or loops. This means that the core properties of

a Markov chain do not generalize to all Markov blankets, e.g.

the conditional independencies induced by a Markov chain

are unidirectional. When applied to successive states over

time, Markov chains capture the notion that events are con-

ditionally independent of previous or past events given the

current states of the system [12]. Systems with unidirectional

conditional independencies are non-autonomous. The reason

is that such systems cannot modulate their relation to the

world, since a Markov chained system is entirely ‘enslaved’

by its here-and-now—and, in particular, its precedents.

This is not true of biological systems. Biological systems

are homeostatic systems that exhibit (or perhaps create)

dependencies over multiple time scales. Accordingly, biologi-

cal systems are able to actively monitor and react to

perturbations that challenge homeostatic variables, which

may, from time to time, go out of bounds. This means that

a biological system must possess a generative model with

temporal depth, which, in turn, implies that it can sample

among different options and select the option that has the

greatest (expected) evidence or least (expected) free energy.

The options sampled from are intuitively probabilistic and

future oriented. Hence, living systems are able to ‘free’ them-

selves from their proximal conditions by making inferences

about probabilistic future states and acting so as to minimize

the expected surprise (i.e. uncertainty) associated with those

possible future states. This capacity connects biological qua

homeostatic systems with autonomy, as the latter denotes

an organism’s capacity to regulate its internal milieu in the

face of an ever-changing environment. This means that if a

system is autonomous it must also be adaptive, where adap-

tivity refers to an ability to operate differentially in certain

circumstances. Were the system not able to do this it would

cease to exist [26,31].

The key difference between mere and adaptive active

inference rests upon selecting among different actions based

upon deep (temporal) generative models that minimize the

free energy expected under different courses of action. This

is fundamentally different from the generalized synchrony

and mere active inference seen in Huygens’ pendulums. Ima-

gine that the pendulums could jump around and attach

themselves to different beams. In this setting what would

happen under adaptive active inference? In fact, the pendu-

lums would aspire to generalized synchrony (i.e. mere
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active inference) and search out the beams whose tiny move-

ments belied more distal external states (i.e. other

pendulums). This reflects the epistemic behaviour that fol-

lows from minimizing uncertainty about ‘what’s out there’.

Clearly, an active pendulum must have a generative model

that includes other pendulums suspended from beams. A

more heuristic example here would be our tendency to

sample salient information that resolves uncertainty about

states of the world ‘out there’, e.g. looking for a frown or

smile on a person’s face. The key point being made here is

that there is an autonomy afforded by systems whose active

states depend on internal states that parametrize (predictive

posterior) beliefs about the consequences of action.

The resulting existential foraging speaks directly to the

framework of autopoietic enactivism in naturalist philosophy

of mind [22,31–34]. Central to this framework are notions

such as operational closure and sense making.

Operational closure refers to a process of autopoietic self-

assembly and self-maintenance separating the internal states

of an organism from its external states, providing an organ-

ism with an identity. Varela et al. [35] highlight this by

saying that:
A cell stands out of a molecular soup by creating the boundaries
that set it apart from that which it is not. Metabolic processes
within the cell determine these boundaries. In this way the cell
emerges as a figure out of a chemical background. Should this
process of self-production be interrupted, the cellular com-
ponents . . . gradually diffuse back into a molecular soup. [35,
p. 44]
The very existence of living systems can therefore be con-

strued as a process of boundary conservation, where the

boundary of a system is its Markov blanket [8]. This means

that the dependencies induced by the presence of a Markov

blanket are what keep the system far removed from thermo-

dynamical equilibrium (not to be confused with dynamic

equilibrium). In other words, it is the dependencies among

states that establish a kinetic barrier, which, in turn, constitu-

tes the system’s parts and maintains an energy gradient. The

operational closure of any living system speaks directly to the

partitioning rule governing Markov blankets; namely that

external states may influence internal states even if the

former are not constitutive parts of an operationally closed

system. Di Paolo [31] makes this explicit, when he says:
[T]here may be processes that are influenced by constituent pro-
cesses but do not themselves condition any of them and are
therefore not part of the operationally-closed network. In their
mutual dependence, the network of processes closes upon itself
and defines a unity that regenerates itself. [31, pp. 15–16]
Thus, any Markov blanketed system will embody recurrent

processes of autopoietic self-generation, which—as long as

the system exists—enforces a difference between a living

system and everything else [33]. This means that these pro-

cesses are fundamentally processes of identity constitution,

given that they result in a functionally coherent unit [36].

Casting operational closure in terms of the presence of a

Markov blanket gives the notion of operational closure a stat-

istical formulation. One of the nice things about casting

operational closure in terms of the presence of a Markov blan-

ket is that it allows us to explain what Varela [36] called ‘the

intriguing paradox’ of an autonomous identity: how a living

system must both distinguish itself from its environment and,

at the same time, maintain its energetic coupling to its

environment to remain alive. According to Varela: ‘this
linkage cannot be detached since it is against this very

environment from which the organism arises, comes forth’

[36, p. 78].

The answer to this apparent paradox lies in the con-

ditional independencies induced by the presence of a

Markov blanket, which (as we know) separates internal

states and external states, and can be further decomposed

into active states and internal states. Crucially, active and sen-

sory states are distinguished in the following sense: active

states influence but cannot be influenced by external states,

while sensory states influence but cannot be influenced by

internal states. This constraint enforces conditional indepen-

dence between internal and external states—from which an

autonomous identity can be shown to emerge—while creat-

ing a coupling between organism and environment via

sensory and active states.

Sense making refers to an organism’s possession of oper-

ationally closed mechanisms that can ‘potentially distinguish

the different virtual (i.e. probabilistic) implications of other-

wise equally viable paths of encounters with the

environment’ [31, p. 15]. Sense making can therefore be

associated with what we call adaptive active inference—the

idea that living organisms can actively change their relation

to their environment. This suggests that living systems can

transcend their immediate present state and work towards

occupying states with a free energy minimum. This speaks

to the main difference between mere active inference and

adaptive active inference. Any organism that must adapt to

the changing dynamics of its environment must be able to

infer the sensorimotor consequences of its own actions. It

cannot do so without possessing a generative model of its

future states dependent on how its acts. This is what adaptive

active inference is: the capacity to infer the results of future

actions given a history of previous engagement with the

world, harnessed in the prior probabilities reflected in the

generative model [37]. Adaptive active inference is therefore

inherently associated with hierarchical generative models.

Hierarchical generative models comprise nested and multi-

layered Markov blankets [38]. The nested structure of such

a Markov blanketed system is what induces the multilayered

independencies required for a system to realize generative

models with temporal and spatial depth, enabling the

system to make inference over recursively larger and larger

scales of sensorimotor consequences.

Intuitively, to remain alive an organism must avoid cross-

ing terminal species-specific phase boundaries. An example

of a phase boundary that makes this clear is the bank of a

river. On one side of this boundary, an organism will retain

its structural integrity. On the other side, it will not (unless

it is amphibious). Being near a riverbank thus presents such

an organism with at least two probabilistic outcomes relative

to how it might act. It can move in such a way that it falls over

the side of the riverbank. Or it can move to remain at some

distance to the riverbank. This means that an organism

must have prior probabilistic beliefs about (the consequences

of) its behaviour, which, in turn, implies that it must be able

to sample across different probabilistic outcomes of its own

actions. Such an organism instantiates a hierarchically

nested generative model consisting of a multiplicity of

Markov blankets, the parameters of which are sculpted and

maintained during adaptive active inference.

What distinguishes autonomous systems from those lack-

ing autonomy (at least as we have defined autonomy here) is
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the way that the former makes inferences about action over

time [37]. This sheds light on the kind of architectural prop-

erties an autonomous system must have for it to

successfully restrict itself to a limited number of attracting

states. The first observation is that action depends on infer-

ence. This means that an organism must be able to make

inferences about the outcomes of its own actions. The

second observation is that for any organism to make infer-

ences of this kind it must have a generative model of future

states. We made this point earlier by stating that an organism

must be able to infer the probabilistic outcomes of its own

actions. For example, an organism needs to assess what

might happen were it to jump into a fast flowing river.

Note that such a creature cannot access sensory observations

of such outcomes, until it undertakes one action, at the

expense of others. This means that systems able to make

such future-oriented inferences must possess a generative

model with temporal or counterfactual depth [26,39]. A

system with a temporally deep generative model will be a

system capable of acting (i.e. inferring) ahead of actuality.

The deeper the temporal structure of a living system’s genera-

tive model, the better it will be at sampling across the

probabilistic outcomes of its own actions—and the better it

will be at entertaining a repertoire of possible actions.
3.3. Summary
In summary, active inference is all about maintaining your

Markov blanket—a game that can be cast in terms of active

inference, under a model of the world that generates sensory

impressions or states. This model becomes equipped with

prior beliefs that shape action on the world. Generally speak-

ing, active inference assumes that the only self-consistent

prior is that the actions undertaken by organisms minimize

expected free energy. Or, put differently, organisms will act

to minimize expected surprise and thereby resolve uncer-

tainty by actively sampling their environments [14]. There

are several intuitive behaviours that emerge under this treat-

ment, which we can illustrate with the riverbank example.

Imagine a creature confronted with a riverbank: in the

absence of any prior beliefs about what it would be like to

be in the water, the river holds an epistemic affordance (i.e.

novelty), in the sense that entering the water resolves uncer-

tainty about ‘what would happen if I did that’. If the

unfortunate creature subsequently drowned, priors would

emerge (with a bit of natural selection) in her conspecifics

that water is not a natural habitat. A few generations down

the line, the creature, when confronted with a riverbank,

will maintain a safe distance in virtue of avoiding expected

surprise, i.e. fulfilling the prior belief that ‘creatures like me

are not found in water.’

Hence, if a creature cannot swim it becomes imperative to

keep away from the banks of the river. This, in turn, implies

that its imperative for action selection must be guided by

priors stating that whichever action is selected it must be

one that minimizes expected surprise. Survival is therefore

premised on having a generative model with a particular

temporal thickness, underpinning the ergodic property of

life (e.g. from now until swimming—or not). Ergodicity

implies that the proportion of time an organism is in some

state (e.g. on land rather than falling into a river) is the

same as the probability of that organism being in that
state—assuming that the fewer states the organism visits

during its lifetime, the lower its average entropy.

On this view, the ultimate endgame is—perhaps counter-

intuitively—to become a Huygens’ pendulum. In other

words, to engineer a world of predictability, harmony and

(generalized) synchrony, in which there is no uncertainty

about what to do—or what will happen. This aspiration of

adaptive active inference (namely, mere active inference) is

famously exemplified by the sea squirt that ‘eats its own

brain’ after it has attached itself to the right ‘beam’. One

might ask why Homo sapiens have failed to reach this existen-

tial Nirvana. This is probably due to the fact that the world

we populate contains other systems (like ourselves) that con-

found predictions—in virtue of the deep generative models

that lie underneath their Markov blankets. In what follows,

we now consider in greater depth the relationships among

Markov blankets that endow the world with structure.
4. Ensemble Markov blankets: blankets of
blankets (of blankets)

In this section, we consider how a collective of Markov blan-

kets can assemble or self-organize into an ensemble that itself

has a Markov blanket. Crucially, this allows us to argue for

the possibility of two things: namely, that an autonomous

system is an operationally closed system with the property

of adaptivity, and that this organization is best characterized

in terms of Markov blankets of Markov blankets, i.e. ensem-

ble Markov blankets. Active inference can therefore make

sense of complex living systems whose autonomy can be

described at multiple levels of organization.2

One of the key characteristics of all living systems is their

hierarchical nature. This means that a non-trivial property of

life is its propensity to form multi-level and multi-scale struc-

tures of structures [30]. Crucially, each of these systems

makes up a larger whole with respect to its parts, while, at

the same time, being a part of an even larger whole, and so

on. Cells assemble to form tissues, tissues combine to form

organs, and organs organize into organisms. These nested,

multi-layered systems are, in turn, embedded within even

larger social systems and ecosystems. Indeed, over the

entire living world, we find living systems organized into

even larger living systems [1]. This view of systems

embedded within systems lies at the heart of systems think-

ing in biology [40,41] and neuroscience [42,43], and has its

developmental roots in synergetics [44] and thermodynamics

[45].

Any one of these systems has its unique Markov blanket.

This means that life comprises Markov blankets of Markov

blankets—all the way down to cellular organelles and mol-

ecules like DNA, and all the way up to organisms and their

environments, both ecological and social (figure 3).

A compelling reason for making this claim is that it

allows us to describe systems at multiple different levels.

That individuals can be distinguished from one another

implies that each system has a Markov blanket—e.g. that

the organs within an organism can be distinguished implies

that they exist. Note that the upshot of this line of thinking

is that an autonomous system (any system able to remain far

removed from its terminal phase boundaries) has a Markov

blanket at its superordinate level composed of Markov blan-

kets at its supraordinate level. The self-evidencing dynamics



blankets all the way down
protozoa

Markov blanket
I model the world

we model the world

we model ourselves modelling the world

blanket of blankets

blankets within blankets

plants

pontiffs

Figure 3. Nested Markov blankets of Markov blankets at different levels of organization.
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of autonomous organization can therefore be cast as exhibiting

two different yet complementary tendencies: an integrative
tendency of a multiplicity of Markov blankets to self-organize

into a coherent self-evidencing whole, and a self-assertive ten-
dency to preserve individual autonomy. This is the basis for

the claim that autonomous systems are made up of Markov

blankets of Markov blankets.

Central to the idea of an ensemble Markov blanket is that

the statistical form and subsequent partitioning rule govern-

ing Markov blankets allow for the formation of Markov

blankets at larger and larger scales (of cells, of organs, of indi-

viduals, of local environments). The reason for this is that the

organization of Markov blankets occurs recursively at larger

and larger scales, recapitulating the statistical form of

Markov blankets at smaller microscopic scales (figure 3).

Figure 4 depicts a system constituted by a multiplicity of

nested Markov blankets at the scale of microscopic dynamics,

and a larger or bigger Markov blanket at the macroscopic

scale of collective dynamics. It thus becomes possible to dis-

tinguish between internal and external states only by appeal

to the presence of a third set of states; namely, the Markov

blanket. This means that the assembly of Markov blankets

can be understood to occur in a nested and hierarchical

fashion, where a Markov blanket and its internal states at

the macroscopic scale consist of smaller Markov blankets

and their internal states at microscopic scales of systemic

operations. Crucially, the conservation of Markov blankets

(of Markov blankets) at every hierarchical scale enables the

dynamics of the states at one scale to enslave the (states of)

Markov blankets at the scale below, thereby ensuring that

the organization as a whole is involved in the minimization

of variational free energy. It is thus only when the properties

of the collective dynamics feed back into the scale below,

forming a free energy-minimizing system at the scale of the

whole system, that it is possible to talk meaningfully of

ensemble Markov blankets—blankets whose self-evidencing

dynamics result in an overall self-sustaining organization.

We can explain the nested Markov blanket organization

of living systems further by appeal to basic principles of com-

plexity theory. The first is that the existence of a
superordinate Markov blanket organization, which is inti-

mately connected to the idea of an order parameter in

complexity theory [47]. An order parameter is a macroscopic

(global or systemic) feature of a system, and captures the

coherency (i.e. dependencies) among the parts making it

up. In this context, the statistical form of each constituent

means that each part infers that it is an internal state of a

larger Markov blanket, which, in turn, allows each internal

state to influence and be influenced by all other internal

states. This process of self-assembling Markov blankets of

Markov blankets must thus be understood as reconfiguring

the particular dependencies between internal, external,

active and sensory states. The second is that this kind of

self-assembling activity implies a separation of the dynamics

involved into slow and fast time scales—a signature feature of

the slaving principle in synergetics [48]. As a result it

becomes possible to understand that slow ensemble

dynamics arise from microscale dynamics unfolding over

fast time scales. But notice that since the ensemble Markov

blanket plays the role of an order parameter it follows that

all the dynamics at the microscale no longer behave indepen-

dently but ‘are sucked into an ordered coordinated pattern’

[49, p. 8]. The dynamics at the microscale are therefore con-

strained by the dynamics at the macroscale. A famous

example of this is the Belousov–Zhabotinsky reaction in

chemistry; however, there are many other examples in the lit-

erature on complex systems and self-organization (see, for

example, [47,49–54]). Any autonomous agent will therefore

be made up of many Markov blankets, the dynamics of

which unfolds on different temporal and spatial scales.

In some cases, it will be correct to identify the boundaries

of an autonomous organization with the biophysical bound-

aries of a single individual. The cell is an obvious case.

Its intracellular web of networks is separated from its extra-

cellular environment by a Markov blanket. However, the

organization of Markov blankets of Markov blankets can

also extend in an outward direction. In such circumstances,

it is more appropriate to conceive of the realizers of Markov

blanketed systems as including extra-individual features of

an organism’s local environment.



Figure 4. Markov blankets of Markov blankets. This illustrates how the conditional dependency structure of Markov blankets can be replicated at larger spatial scales.
Internal (red) states are separated from external (blue) states via sensory (yellow) states and active (orange) states at different scales of organization [46].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20170792

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 D

ec
em

be
r 

20
24

 

The water boatman is an example of an autonomous

system, the internal states of which comprise environmental

aspects [31]. The water boatman is ‘able to breathe under-

water by trapping air bubbles (plastrons) using tiny hairs

in the abdomen. The bubbles even refill with oxygen due to

the differences in partial pressure provoked by respiration

and potentially can work indefinitely. They provide access

to longer periods underwater thanks to a mediated regulation

of environmental coupling (which is nevertheless potentially

riskier than normal breathing)’ [31, p. 17]. This example high-

lights the fact that some creatures incorporate elements of their

niche that jointly contribute to—or preserve—their structural

integrity over time. Hence, the bubbles in which the boatman

is wrapped are best conceived of as elements constituting the

boatman’s Markov blanket. This follows because without the

bubbles the water boatman would not be able to minimize

variational free energy. It is in this sense that the water boat-

man plus its self-orchestrated air bubbles constitute a Markov

blanket the boundaries of which reach all the way out to

include parts of the environment.

Markov blankets of autonomous systems are not merely

capable of extending outwards. The boundaries can also be

shown to be malleable. This is the case with Clark’s [9]

example of the caterpillar-cum-butterfly. Most caterpillars

will spend part of their lives on their food source, devouring

it. Over the course of their lifespan, caterpillars move away

from their preferred source of food. They do this to find shel-

ter—a place in which to pupate, the process that transforms

them into adulthood. In all caterpillars pupation occurs

inside a protective shell known as a chrysalis, which is

assembled by the caterpillar literally shedding its skin. It is

this self-made shell that protects the caterpillar while it

morphs into a butterfly. Fascinatingly, during this phase tran-

sition most of the caterpillar’s body breaks down to a mass of

undifferentiated cells—like a primordial soup out of which

cells begin to set themselves apart and self-organize into a
new phenotypic form. When the transformation is com-

plete—a process known as holometabolism—the caterpillar

turned pupa emerges in the form of a butterfly. From a cer-

tain point of view, these phase transitions may look as if

the organism is unable to maximize evidence for its own

autonomy—for its own existence. Yet, as Clark (convincingly,

in our view) argues, ‘the act of transformation is itself an

essential part of the on-going project of exchanging entropy

with the environment so as to persist in the face of the

second law [of thermodynamics]’ [9, p. 12]. This means that

the succession of differently Markov blanketed organizations

is itself a free energy-minimizing strategy—one that occurs

over the entire life cycle from caterpillar to butterfly. As

Clark puts it: ‘The life-cycle is self-evidencing insofar as the

very existence of the linked stages (caterpillar, pupa, butter-

fly) provides evidence for the “model” that is the

metamorphic agent, where that agent is not identified with

a specific morphology (which would correspond merely to

one state of the life cycle) but with the temporally extended

whole’ [9, p. 12].

These examples both show that the organizational bound-

aries of living systems are open and flexible in the precise

sense that such boundaries need not be co-extensive with

an organism’s bodily boundaries.
5. Conclusion
In this paper we have argued that the autonomous organiz-

ation of living systems consists of the hierarchical assembly

of Markov blankets of Markov blankets through adaptive

active inference. We have further argued that this nested

Markov blanketed organization need not be co-extensive

with the biophysical boundaries of the organism but may

extend to include aspects of an organism’s environment.

We have not established (i.e. shown) that the self-
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Figure 5. Illustration of Jensen’s inequality used to show that the free energy
is an upper bound on surprise.
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organization of hierarchically composed Markov blankets of

Markov blankets is an emergent property of systems (under

the right sorts of conditions). Our focus in this paper has

been on the implications of such an emergent structure.

Having said this, in a parallel (formal) programme of work,

we have used simulations to provide a proof of principle

that this particular (and possible ubiquitous) form of self-

organization is an emergent property. The simulations we

use in this parallel work build on previous work that charac-

terizes the emergence of pattern formation and

morphogenesis in a biological system [7] but with an impor-

tant twist. Instead of simulating the assembly of Markov

blankets systems from the bottom up, we apply a top-down

approach (see Palacios et al. [46] for details).
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Endnotes
1This speaks to a subtle argument that, briefly, goes as follows. The
position states of one Markov blanket can only influence the velocity
states of another (through forces). This ensures that position (i.e.
action) states of one blanket cannot be directly influenced by velocity
(i.e. sensory) states of another blanket (i.e. external states).
2A slightly more technical motivation for Markov blankets of Markov
blankets follows from the notion of states. We predicated our argu-
ment on the ensemble dynamics of states to show that things are
only defined in terms of their Markov blankets. It therefore follows
that the states of things are states of Markov blankets. From this it fol-
lows that Markov blankets of states must entail Markov blankets of
(the states of) Markov blankets.

Appendix A
The curve of a logarithmic function is concave. This has an

important implication when averages are taken either of the
logarithmic function or of the input to the function. To gain

some intuition for this, consider a dataset of just two points,

x1 and x2. The average of these will lie halfway between the

two, as shown on the x-axis in figure 5. When the logar-

ithms of x1, x2 and their average are calculated (y-axis), it

is clear that the log of the average lies above the midpoint

between logx1 and logx2. The midpoint is the average of

the logarithms, so this implies that the log of an average is
greater than the average of a log. This is a statement of Jensen’s

inequality.

If we replace the variable x with a ratio of probabilities,

Pðo, sÞ=QðssÞ, and take averages (‘expectations’) with respect

to a distribution Q(s), we can use Jensen’s inequality to write:

EQ(s) ln
Pðo, sÞ
QðsÞ

� �
� ln EQ(s)

Pðo, sÞ
QðsÞ

� �
:

The term on the left (the average of the log) is the negative

free energy. The term on the right is the negative surprise. To

see this, if we write the expectation out in full, we have

EQ(s)
Pðo, sÞ
QðsÞ

� �
¼
X

s

QðsÞPðo, sÞ
QðsÞ ¼

X
s

Pðo, sÞ ¼ PðoÞ:

These allow us to rewrite the inequality (noting that,

when we make both sides negative, the inequality sign

reverses),

F � � ln PðoÞ:

This is the statement that the free energy is an upper

bound on surprise.
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