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Changing patterns of human resource use and food

consumption have profoundly impacted the Earth’s biosphere.

Until now, no individual taxa have been suggested as distinct

and characteristic new morphospecies representing this

change. Here we show that the domestic broiler chicken is one

such potential marker. Human-directed changes in breeding,

diet and farming practices demonstrate at least a doubling

in body size from the late medieval period to the present in

domesticated chickens, and an up to fivefold increase in body

mass since the mid-twentieth century. Moreover, the skeletal

morphology, pathology, bone geochemistry and genetics of

modern broilers are demonstrably different to those of their

ancestors. Physical and numerical changes to chickens in the

second half of the twentieth century, i.e. during the putative

Anthropocene Epoch, have been the most dramatic, with

large increases in individual bird growth rate and population

sizes. Broiler chickens, now unable to survive without human

intervention, have a combined mass exceeding that of all

other birds on Earth; this novel morphotype symbolizes the

unprecedented human reconfiguration of the Earth’s biosphere.
1. Background
Accelerating human-driven physical, chemical and biological

changes to the Earth system have been profound, sparking
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Figure 1. Global consumption of domesticated chicken, pig and cattle from 1961 to 2016. Chicken is the most common meat
consumed, with a standing population in 2016 of over 22.7 billion. The number of chickens slaughtered per year is an order
of magnitude larger than that of pigs or cattle. Data compiled from UN Food and Agriculture Organization, FAOSTAT, at
faostat.fao.org, accessed November 2018.
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suggestions of a new geological epoch, the Anthropocene [1]. Human consumption trends have driven

unprecedented changes to the Earth’s biosphere [2–4]. Populations of wild animal groups have

plummeted in recent decades [5], while human and livestock populations have risen [6]. The biomass of

humans and their domesticated animals (including livestock) now outweighs that of all wild terrestrial

vertebrates [7,8]. Understanding the nature of this change is important to help protect biodiversity.

Domesticated chickens (Gallus gallus domesticus Linnaeus, 1758) are a striking example of a human

reconfigured biosphere. They are the world’s most numerous bird with a standing population of 22.7

billion [6]. This population is an order of magnitude greater than the standing stocks of the most

abundant wild bird species (red-billed quelea approximately 1.5 billion, house sparrow approximately

0.5 billion, rock dove approximately 0.25 billion [9]), other farmed birds (turkeys approximately 0.3

billion, geese approximately 0.3 billion, ducks approximately 1.1 billion [6]) and farmed pigs and cattle

(figure 1). In Europe, the population of domesticated chickens in 2009 (1.9 billion) was greater than the

combined population of the 144 most numerous wild bird species (1.6 billion) [10]. It is likely to be the

largest standing population of a single bird species in Earth’s history.

Chicken-meat consumption is growing faster than any other meat type and is soon to outpace pork

(figure 1). Expanding consumption in developing countries is driving the trend [11]. This has had a

profound impact on the biology of the broiler (meat-chicken). Since the Chicken-of-Tomorrow

Program in the early 1950s, launched to encourage the development of higher meat-yielding birds

[12], chickens have undergone extraordinary changes. From the mid-twentieth century to the present,

broiler growth rates have soared, with up to a fivefold increase in individual biomass [13,14]. Here,

we document the biology of the broiler from the Roman era to the present and discuss whether the

biological changes to the broiler are distinctive enough to make them a marker species of the

proposed Anthropocene Epoch. Changes to the broiler skeleton [15], diet and genetics [16] (preserved

as geochemical signatures in their bones) have the potential to be fossilized.

The current dominance of Gallus gallus domesticus as the world’s most numerous bird species would

not be possible without modern technology. The system of industrial chicken production and its export
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Figure 2. Industrial broiler production and archaeological record of domestic chickens in the Old World. Colour key: grey: countries
with industrial broiler production (vertical integration systems); white: countries with no industrial production, but chicken meat is
consumed. Countries with vertical integration systems have been reported in the literature, or they produce large volumes of
chicken meat (greater than 500 000 tonnes yr21 from 2013 to 2014 [6]).
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around the world has facilitated surging chicken-meat consumption. Separate broiler breeding units,

farms, slaughterhouses, processing plants and marketing are coordinated into one system called

vertical integration. First implemented in the southern USA in the 1950s, vertical integration systems

now account for 97% of USA broiler production [17]. Industrial chicken farming is now widespread

around the globe (figure 2) and has enabled the rapid rise in broiler production from the 1950s

onwards (figure 1; electronic supplementary material, figure S1). In 2006 it was estimated that 70% of

broilers were intensively reared [18]. The system epitomizes efficient and high volume production

from a human perspective: in the USA the top broiler production firm, Tyson Foods, slaughtered 35

million chickens per average week in 2012 [17]. Retailers of chicken are some of the most successful

and globalized, for example KFC, the world’s largest chicken meat retailer, has over 25 500 stores in

125 countries worldwide (www.kfc.com, accessed February 2018).

The domestic chicken originated from the red jungle fowl (Gallus gallus Linnaeus, 1758), native to

tropical S/SE Asia [19]. Contemporary, non-indigenous red jungle fowl occur in the Americas,

Australia, Europe and Africa, due to deliberate human translocation, and are adapted to a much

wider climatic range than indigenous birds [19]. The fossil record of the red jungle fowl is poorly

known, but molecular-clock estimates place the origin of the order Galliformes (pheasants, jungle

fowl and relatives) in the early Cretaceous [20]. However, the archaeological record of chicken

domestication and husbandry is relatively well documented (figure 2). Archaeological studies had

suggested that chickens were domesticated ca 8000 years ago, although ongoing DNA and dating

research is likely to bring this date forward [21]. Domesticated chicken bones are recorded from the

Indus valley as early as 2500–2100 BCE [22]. The time-transgressive spread of domesticated chickens

out of Asia is contemporaneous with the establishment of new trade routes [23]. For example,

chickens were introduced to the Iberian Peninsula by Phoenician traders in the first century CE and

Spanish colonists introduced domesticated chickens to the New World in 1500 CE [23].
2. Methods
Since the early 1990s the Museum of London Archaeology (formally the Museum of London Specialist

Services and Museum of London Archaeological Service) has systematically recorded zooarchaeological

data from developer-funded excavations in London. Included among this dataset is an enormous archive

of animal bone measurements taken using the standard set out by von den Driesch (1976) [24]. In this

study, 486 individual tibiotarsus distal breadth measurements from 74 sites from the city were

analysed and compared with modern broiler data. The distal width was measured in preference to

length of the tibiotarsus because the majority of bone specimens were broken. To avoid potential

http://www.kfc.com
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Figure 3. Box and whisker plot of domestic chicken bone size through time. Measurements are of the width of the tibia (greatest
distal breadth, Bd, in mm), N ¼ 522. Archaeological data derived from sites throughout London from 1220 CE to 1900 CE [29]
augmented with new measurements from the Roman and early medieval periods, compared to measurements of a cross-bred
red jungle fowl (RJF) [30] and six-week old modern broilers from South Africa (Cobb 500 breed, sex unknown) [31] and
England (Ross 308 breed, males). A statistical analysis of the dataset is given in electronic supplementary material, table S1.
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confusion with age-related size change, measurements from archaeological specimens were all derived

from skeletally mature birds. To facilitate the identification of temporal trends and accommodate the

majority of the archaeological data, bone measurements were placed into 12 overlapping temporal

groups (electronic supplementary material, table S1). Assemblages that were broadly or insecurely

dated assemblages (i.e. bones from contexts with residual pottery) were excluded from analysis. It is

possible that the group of domestic fowl bones include guinea fowl (Numida meleagris L., 1758) and

pheasant (Phasianus colchicus L., 1758) bones, which are morphologically similar to chicken [25,26].

This is pertinent to the archaeological record of early chicken domestication: the re-examination of

early Holocene bones from northern China reputed to provide early evidence of chicken

domestication, revealed that most of the bones were from pheasants rather than chickens [27].

However, pheasant and guinea fowl are only identified rarely so it is assumed that most fowl bones

derive from chicken. A non-parametric Mann–Whitney pairwise comparison was run using the

statistical software PAST [28] to examine the statistical significance of broiler skeletal size (electronic

supplementary material, table S1). The datasets supporting this article are included in the electronic

supplementary material.

Data on broiler and other livestock populations was sourced from the FAO (Food and Agriculture

Organization of the United Nations) website (http://faostat3.fao.org) and the United States

Department of Agriculture statistics service (www.nass.usda.gov). Data on chicken growth rates,

osteo-pathologies and bone collagen isotopes were synthesized from numerous publications (cited in

the figure captions).
3. Results
The size of chicken bones from multiple archaeological sites in London, UK, is recorded from the Roman

era to the end of the nineteenth century (figure 3) compared against a red jungle fowl and two broiler

datasets. Modern broiler skeletons are significantly larger than both the wild progenitor bird and

archaeological domestic chickens (figure 3; electronic supplementary material, table S1). The greatest

distal breadth of the tibiotarsus (which provides a proxy of body mass) is in some specimens twice

http://faostat3.fao.org
http://faostat3.fao.org
http://www.nass.usda.gov


broiler
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Figure 4. Limb bones (femur, tibiotarsus, tarsometatarsus) of a modern broiler and a red jungle fowl. A juvenile broiler and red
jungle fowl silhouette with limb bones are shown at proportionate size to each other for comparison. Broiler limb bones (left): male,
five weeks of age and a Cobb, specimen R650, from the School of Archaeology and Ancient History, University of Leicester. Cross-bred
red jungle fowl limb bones (right): male, six weeks of age and of modern breeding stock from an ancestral line, specimen NHMUK
S/2009.1.11, from the Ashdown Collection, Natural History Museum, Tring. At slaughter age the over-sized but immature skeleton of
the broiler is characteristically poorly ossified and relatively featureless. Image copyright of the Trustees of the Natural History
Museum, London. Scale bar 20 mm.
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the width in a six-week-old modern broiler than in an adult red jungle fowl (figure 3). More dramatic, is a

direct comparison of juvenile broiler and red jungle fowl lower limb bones of the same age, which shows a

tripling in width and a doubling in length (figure 4). From the Roman era until 1340 the distal widths of

domesticated chicken tibiotarsi in London were similar to those of their red jungle fowl ancestor (electronic

supplementary material, table S1). Sustained increases in the size of chickens from 1340 to 1650 (figure 3)

are concurrent with size increases in other domesticated livestock [29]. The average distal tibiotarsus width

measurements from 1650 up until 1900 remain fairly constant (figure 3).

While the archaeological record for chickens indicates alterations in bone morphology related to

domestication, the speed and scale of changes escalated considerably in the second half of the

twentieth century. A surge in chicken production from the 1950s onwards (figure 1) has resulted in an
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increase over this period in the mass of individual birds (electronic supplementary material, figure S1).

We quantify how the growth rate of broilers (from juvenile to adult) has changed over the twentieth

century by a compilation of data from several commercial breeds (figure 5; electronic supplementary

material, figure S2). There has been a steady increase in growth rate since 1964 and the growth rate of

modern broilers is now three times higher than that of the red jungle fowl. However, data from the

twenty-first century show that the growth rate is slowing (figure 5; electronic supplementary material,

figure S1) and may be reaching a plateau.

A change in the diet of domesticated chickens to produce high meat-yields is detected in the analysis

of dietary carbon (d13C) and nitrogen (d15C) isotopes (figure 6). Chicken bone collagen isotopes from the
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Roman, Anglo-Saxon, High Medieval and Late Medieval periods are distinct from those of modern

broilers (figure 6; electronic supplementary material, figure S3).

Multiple and significant osteo-pathologies arise as a consequence of the accelerated growth rate of

broilers (electronic supplementary material, figure S4). These pathologies are common in broilers, but

are only rarely observed in archaeological bones: for example, tibial dyschondroplasia (poor

ossification of the tibia leading to lameness) is recorded in a turkey from nineteenth-century London

[45], but has never been reported in chicken bones from archaeological contexts.
blishing.org
R.Soc.open

sci.5:180325
4. Discussion
The intensive production of broilers and rising rates of consumption (figure 1) increases the standing

biomass of domesticated chickens year on year. Over 65.8 billion meat-chicken carcasses were consumed

globally in 2016 [6] and this is set to continue rising. This may be an underestimate, given the standing

population of 22.7 billion and lifespan of five to seven weeks. The FAO states that this number is

aggregated from statistics that may be official, semi-official, estimates, or calculated data. The lifespan of

broiler chickens is short (five to seven weeks) compared to egg-laying hens (1 year), both of which are

slaughtered at a young age for economic reasons. The contrast between the lifespan of the ancestral red

jungle fowl (3 years [46] to 11 years (Tommaso Pizzari 2018, personal communication) in captivity) and

that of broilers means that the potential rate of carcass accumulation of chickens is unprecedented in the

natural world. Irrespective of the number of broiler chickens killed per annum, the standing population

of 22.7 billion chickens is striking and mirrors other population data comparing domesticated with wild

animal populations; for example, the biomass of domesticated cattle is 250 times higher than that of

elephants [8]. The standing biomass of domesticated poultry, mostly chickens, has been calculated as

5 Mt C, about three times higher than the total biomass of all wild bird species combined [7]. The rise

in the number of domesticated chickens over recent decades mirrors the decline in the population

numbers of wild bird species, particularly those that are the most common [5,10]. This mono-specific

vast bird biomass is unprecedented in Earth’s recent history and perhaps also in Earth’s geological

history. While fossil bird populations are difficult to estimate, it is thought that the most common wild

bird in human history, the passenger pigeon, had a population of 3–5 billion in the 1800s [47].

The global range of modern broilers, in comparison with the geographically restricted range of their

jungle fowl ancestors, is in part a factor of their climate-controlled (temperature, humidity and light)

housing conditions [48]. The vertical integration farming system of industrial production is reliant on

the technosphere (the global emergent system that includes humans, technological artefacts, and

associated social and technological networks) [49]. Broiler farming is undertaken within a complex

mechanized system that operates with the integration of computer software, electricity, transportation

vehicles, refrigeration, feed processing factories and more [17]. This is epitomized in the life cycle of

intensively farmed broilers: eggs are laid in broiler breeder facilities and transported to hatcheries,

where eggs are incubated artificially for 21 days [50]. After hatching, the 1-day-old chicks are

transported to high-capacity finishing units housing up to 50 000 individuals in climate-controlled

sheds [51]. For the first week of life, chicks are kept at temperatures of 328C to 358C and relative

humidity of 60% to 70% [48]. At five to seven weeks old, broiler chickens are transported to the

slaughterhouse, where most waste products (feathers, manure, blood etc.) are recycled via anaerobic

digestion, incineration and rendering into edible by-products [52], all technology-dependent.

Breeding by natural selection has been modified by human-directed selection. While the size of the

domesticated chicken in historical times was little different to the red jungle fowl (figure 3), domestic

chicken bone morphology shows that selective breeding practices took place as early as the sixteenth

century [53,54]. Chickens from the late twentieth century are markedly different in terms of size

(figures 3 and 4), growth rate (figure 5) and body shape. The change in body mass and body shape

has been visually documented by photographs of broiler breeds throughout ontogeny from 1957, 1978

and 2005 [14]. Broilers from a 1957 breed are between one-fourth and one-fifth of the body weight of

broilers from a twenty-first century breed [13,14]. The modern broiler is a distinctive new morphotype

with a relatively wide body shape, a low centre of gravity [13] and multiple osteo-pathologies. If left

to live to maturity, broilers are unlikely to survive. In one study, increasing their slaughter age from

five weeks to nine weeks resulted in a sevenfold increase in mortality rate [55]: the rapid growth of

leg and breast muscle tissue leads to a relative decrease in the size of other organs such as the heart

and lungs, which restricts their function and thus longevity [56]. Changes in the centre of gravity of

the body, reduced pelvic limb muscle mass and increased pectoral muscle mass cause poor
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locomotion and frequent lameness [15]. Unlike most other neobiota, this new broiler morphotype is

shaped by, and unable to live without, intensive human intervention.

Naturally omnivorous, the diet of the broiler chicken has become more grain-based with approximately

60% of broiler feed composed of cereals such as maize, wheat and barley [18]. Diets vary globally, with

maize most commonly used in the USA because it has a higher nutrient value than other cereals [57].

Additions to the dietary cereals can include fishmeal [18] and re-processed hatchery and broiler waste

(egg shells, chicks and chickens) [13]. The alteration to chicken diets is designed to reduce the amount of

feed used while increasing meat yields [13]; however, it also homogenizes nutritional intake, eliminating

a source of natural variation within the stock (figure 6). The current plateau in broiler growth rates may

not be maintained, with current research focusing on new technologies to increase the protein intake of

broiler diets by using insect meal instead of plant proteins [58].

The genetic make-up of the modern broiler morphospecies is equally striking. The domestic chicken’s

genetic make-up differs from the ancestral red jungle fowl, in terms of deletions and mutations, some of

which relate to the modification of the animal for maximum growth [59]. For example, the thyroid

stimulating hormone receptor (TSHR) allele has a pivotal role in metabolic regulation and

photoperiod control of reproduction, allowing domestic breeds to reproduce year-round [59]. This

genetic marker could be used to recognize Gallus gallus domesticus in the future fossil record, in the

way that the b-carotene dioxygenase 2 gene associated with yellow skin colour resulting from a diet

of maize may be identified in archaeological chicken bones from approximately 500 years ago [60].

Three companies worldwide supply 90% of broiler chicks and selective breeding has resulted in 50%

or more of genetic diversity loss in commercial lines compared with ancestral breeds [16].

Global human trends towards increased animal protein consumption, along with an increased human

population, is impacting on land use and wild species populations [5]. Chickens have the greatest feed

efficiency of any farmed animal species [61], but their numerical dominance is reflected in feed

consumption. In the USA the combined feed consumption by broiler and egg-laying chickens has been

calculated as 58 Mt (�109 kg) of dry concentrates (grains and by-products) per year; the greatest feed

volume of any farmed animal group [62]. Overall, the land area required to produce feed for chickens is

lower than for pigs and cattle, who consume processed roughage and pasture, which increases the

overall land-use burden [62,63]. Nevertheless, the land area and reactive nitrogen emitted (from

fertilizers) from the production of chicken feed is significantly higher (more than double) that used to

grow plant crop staples (rice, wheat and potatoes) [62]. The total global energy consumption (electricity,

natural gas) used in the broiler production system in Europe is estimated to be higher than that for the

production of beef or pork [64], although a global data analysis is yet to be undertaken.

What is the potential for broilers to become fossilized? Bird carcasses in the wild are scavenger- and

decay-prone and so do not commonly fossilize. Chicken bones, by contrast, are often sold intact within

products for human consumption, such as chicken wings, drumsticks and whole birds, and post-

consumption the discarded bones form a common component of ordinary landfill sites as part of

domestic garbage [65]. The low skeletal density of chicken bones [30] would normally mitigate against

long-term preservation potential. However, organic materials are often well preserved within landfill

deposits, where anaerobic conditions mean that bones ‘do not so much degrade as mummify’ [66]. The

osteo-pathology of modern broiler bones could be used as an additional stratigraphic characteristic of

late-twentieth century birds which have been bred for weight gain and/or a fast growth-rate. Further

research is needed to document the extent of the occurrence and type of osteo-pathologies in broilers in

the twentieth century in order to better constrain their incidence through this time interval.

Carcasses can be disposed of in on-farm burial pits from routine losses during production [67], or as

mass-burials at landfills resulting from the depopulation of flocks affected by pathogenic outbreaks of

avian influenza, as when 10 million poultry were euthanized in South Korea in 2008 [68]. The broiler

chicken is therefore likely to leave a widespread and distinctive biostratigraphic signal in the

sedimentary record, as a key fossil index taxon of the Anthropocene. Its potential in this respect is

similar to that of other anthropogenic materials which have appeared, or exponentially accumulated

in volume. These include during the Great Acceleration [69] from the mid-twentieth century, materials

such as plastic, concrete and spheroidal carbonaceous particles [1]. Broilers are globally distributed

and their carcasses have accumulated in settings which lead to good fossil preservation potential.

Chicken bones, though not as homogeneously distributed as some geochemical anthropogenic

markers such as radionuclides [1], will be abundant at landfill sites and other widely distributed

accumulations. Given this global distribution, together with its huge population size and distinctive

biology, genetics and bone geochemistry, the broiler chicken may be viewed as a key species indicator

of the proposed Anthropocene Epoch.
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5. Conclusion
The advent of the fast-growing broiler morphotype in the 1950s and its uptake across industrial farms

worldwide, can be viewed as a near-synchronous global signal of change to the biosphere, currently

maintained by humans and the technosphere. Modern broiler chickens are morphologically, genetically

and isotopically distinct from domestic chickens prior to the mid-twentieth century. The global range of

modern broilers and biomass dominance over all other bird species is a product of human intervention.

As such, broiler chickens vividly symbolize the transformation of the biosphere to fit evolving human

consumption patterns, and show clear potential to be a biostratigraphic marker species of the Anthropocene.

Ethics. Individual tibiotarsus distal breadth measurements for modern broilers were derived by measuring defrosted

bones from 16 control-fed Ross 308 birds that were archived post-mortem following a nutrition trial granted ethical
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