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Marine mammal mass strandings have occurred for millions of years, but their

origins defy singular explanations. Beyond human causes, mass strandings

have been attributed to herding behaviour, large-scale oceanographic fronts

and harmful algal blooms (HABs). Because algal toxins cause organ failure

in marine mammals, HABs are the most common mass stranding agent

with broad geographical and widespread taxonomic impact. Toxin-mediated

mortalities in marine food webs have the potential to occur over geological

timescales, but direct evidence for their antiquity has been lacking. Here, we

describe an unusually dense accumulation of fossil marine vertebrates from

Cerro Ballena, a Late Miocene locality in Atacama Region of Chile, preserving

over 40 skeletons of rorqual whales, sperm whales, seals, aquatic sloths,

walrus-whales and predatory bony fish. Marine mammal skeletons are distrib-

uted in four discrete horizons at the site, representing a recurring accumulation

mechanism. Taphonomic analysis points to strong spatial focusing with a

rapid death mechanism at sea, before being buried on a barrier-protected

supratidal flat. In modern settings, HABs are the only known natural cause

for such repeated, multispecies accumulations. This proposed agent suggests

that upwelling zones elsewhere in the world should preserve fossil marine

vertebrate accumulations in similar modes and densities.

1. Introduction
During the past approximately 50 Myr, marine mammals evolved in ocean

ecosystems that have undergone global changes in sea level, temperature, pro-

ductivity and ocean circulation [1–5]. Within this time frame, multiple marine

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2013.3316&domain=pdf&date_stamp=2014-02-26
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mammal lineages evolved from trophic obscurity (i.e. terres-

trial ancestry, with little influence on ocean ecosystems) to

ecological dominance in marine food webs [6–10]. Under-

standing how marine mammals, such as cetaceans, pinnipeds

and sirenians, ascended to become apex consumers in marine

food webs [11] requires data from the fossil record. Palaeobiol-

ogists have used counts of fossil species [2,4,5,12] to outline

evolutionary changes in richness at the scale of geologic time

[13], especially during episodes of major climatic changes

[3,4]. These latter studies investigated evolutionary causes

and responses over protracted, diachronic time frames. How-

ever, testing ecological interactions requires diversity datasets

from synchronic snapshots at specific scales that account for

time-averaging, sampling density and other metrics of diver-

sity, such as abundance [14]. This latter goal is a challenge

because the marine mammal fossil record consists mostly of

singleton occurrences [13] and not dense accumulations.

Obtaining ecological snapshots of large mobile predators

such as marine mammals is logistically difficult because their

life-history traits (e.g. long life, low fecundity, large range)

have broad temporal and geographical parameters [6–9].

Palaeoecologists working with terrestrial mammal and

marine invertebrate communities have discovered that

sampling diversity with increased temporal- and spatial-

averaging generates death assemblage datasets that compare

well with living communities [15–18]. Recently, Pyenson

[19,20] demonstrated that death assemblages of modern ceta-

ceans (e.g. strandings) faithfully record ecological snapshots

of living communities at temporal and spatial scales com-

mensurate with their macroecology, which suggests that

certain fossil assemblages might retain similarly faithful

ecological data. Marine mammal mass strandings are well

recorded in historical times [19,20], but the putative cases

from the fossil record cannot be linked to a particular causal

mechanism [21,22], especially without a better understanding

of the taphonomic mechanisms that both preserve and prevent

fossil marine mammal material from entering the sedimentary

record [23]. Here, we describe an unusual accumulation

of fossil marine vertebrates from the Late Miocene of Chile

that provides unique insights into the mechanisms that pre-

serve dense deposits of marine mammal material, and the

oceanographic processes responsible for their origin.
from MPC 677 in situ. See http://cerroballena.si.edu and the electronic
supplementary material for more details.
2. Material and methods
(a) Locality
From 2010 to 2012, road expansion along the Pan-American

Highway in Atacama Region of Chile (figure 1) opened a 20 �
250 m quarry at a site, called Cerro Ballena (27802031.5100 S,

70847042.1800 W), which revealed over 40 complete and partial

marine mammal skeletons, along with isolated remains of other

marine vertebrates. A road-cut stratigraphic profile of the site

exposes approximately 9 m of fine to very fine-grained sandstones

belonging to the Bahı́a Inglesa Formation [24–27], unconformably

overlain by a Pleistocene transgressive–regressive marine terrace

sequence [28]. Cerro Ballena is located too far north for strati-

graphic correlation with other reported localities of the Bahı́a
Inglesa Formation [28], or any recognized members that have

been proposed previously ([26] and see the electronic supplemen-

tary material). Within approximately 8 m of the formation at Cerro

Ballena, four different bone-bearing levels (Bone Levels 1–4; BL1–

BL4) produced articulated and associated marine mammal fossils

(figures 1 and 2). The quarry, which is now paved over, represents
only a small portion of the fossiliferous levels, with geologic maps

of the unit indicating a local aerial extent of approximately 2 km2

(see the electronic supplementary material).
(b) Geologic age
The general region surrounding Caldera contains fossiliferous

marine sediments belonging to the Mio-Pliocene age Bahı́a
Inglesa Formation [25], which has produced an extensive list of

fossil marine vertebrates [26–28]. We did not find any biostrati-

graphically relevant invertebrate and microfossil indicators in

strata at Cerro Ballena, although there were two biostratigra-

phically useful vertebrate fossils from Cerro Ballena that also

occur in the Mio-Pliocene Pisco Formation of Peru: aquatic

sloths (Thalassocnus) and sharks (Carcharodon). Isolated elements

of aquatic sloths from Cerro Ballena are referred to the species

Thalassocnus natans [29]. Both T. natans and Carcharodon hastalis
from Cerro Ballena are correlated with the El Jahuay (ELJ) and

http://cerroballena.si.edu
http://cerroballena.si.edu
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Montemar Horizon (MTM) horizons in the Sacaco Basin of Peru

[30]. In turn, this yields upper and lower bounds on the age of

this unit of the Bahı́a Inglesa Formation at Cerro Ballena as 9.03–

6.45 Ma, following [31] (see the electronic supplementary material).

The overlap in stratigraphic range between these two taxa implies

that the strata in Cerro Ballena were deposited at a time period in

between the deposition of the ELJ and MTM horizons of the Pisco

Formation. Thus, we infer a Late Miocene age (or Late Tortonian

to Early Messinian stage) for the Bahı́a Inglesa Formation part of

the section at Cerro Ballena, which coincided with a rise in sea
level caused by transgressive–regressive cycling and tectonic

subsidence along this part of the coastline [32].

(c) Depositional environment and sedimentology
In the road-cut section of the Bahı́a Inglesa Formation at Cerro

Ballena, we measured a stratigraphic section, noted sedimentary

structures and observed invertebrate trace fossils (figure 2a–c).

Sediment samples collected from BL1–4 were freshly excava-

ted and covered in optically clear resin (Epo-Tek 301, Epoxy
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Figure 3. Orthogonal digital three-dimensional polygon model of the most complete fossil rorqual specimen at Cerro Ballena, MPC 677. True north indicated by arrow. See
http://cerroballena.si.edu and the electronic supplementary material for more details.
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Technology, Billerica, MA, USA). Embedded samples were then

cut and thin-sectioned for scanning electron microscopy and

electron spectroscopy using an FEI Nova NanoSEM 600 under

low vacuum with the gaseous analytical detector for imaging

and an energy dispersive X-ray spectroscopy detector (Thermo-

Fisher) for geochemical analysis. Samples were either placed

directly on carbon-tape or embedded in epoxy and thin-sectioned,

and left uncoated for SEM and EDS characterization (see the elec-

tronic supplementary material, figure S1). Light microscopy was

performed using an Olympus BX51 microscope with a Chameleon

digital video camera.

(d) Capturing, processing and rendering three-
dimensional digital datasets

Under time-sensitive and salvage circumstances, we documen-

ted in situ skeletal remains using three-dimensional digital tools,

before they were collected for study and care at their repositories

(see the electronic supplementary material). Photogrammetry

and computer vision datasets for fossil rorquals were captured

with 20 and 30 cm aluminium scale bars and metal markers (to

assess line of sight and control for coverage quality) on a Canon

5D with multiple lenses, and geotagged using a Garmin Etrex

GPS. We also used Munsell colour charts for colour calibration,

accuracy and downstream correction in photography editing

software packages. Raw digital datasets were processed into

coherent models by aligning datasets, cleaning up noise and

removing redundant data using GEOMAGIC v. 2012, POLYWORKS

v. 12.0 and ZBRUSH v. 4R3 for the very large dataset of MPC

(Museo Paleontologico de Caldera) 677. Direct Dimensions, Inc.

(Owings Mills, MD, USA) aligned the laser arm dataset using Geo-

magic, and the model was then retopologized using ZBRUSH for

MPC 677, creating an orthogonal digital rendering from three-

dimensional polygon data (figure 3). URC Ventures (Redmond,

WA, USA) created orthogonal renderings from three-dimensional

point cloud datasets (figure 4) by aligning and retopologizing point

cloud data (see the electronic supplementary material, figure S2).

The resultant three-dimensional datasets provided sub-centimetre

accuracy, and full resolution texture-mapped imagery is available

at http://cerroballena.si.edu.
3. Results and discussion
Taphonomic analysis of the site reveals several features that

are directly comparable to modern marine mammal mass

strandings. First, the site preserves multiple species of marine

mammals, dominated by abundant skeletons (MNI¼ 31;
table 1) of large baleen whales (clade Balaenopteridae or rorq-

uals) that are likely all from the same species (see the electronic

supplementary materials), and encompass a range of ontogen-

etic stages, from calves to mature individuals (figures 3 and 4).

Other marine mammal species include: (i) at least two different

phocid seals (Acrophoca, and a new morphotype); (ii) an extinct

species of sperm whale (Scaldicetus morphotype); (iii) a walrus-

like toothed whale (Odobenocetops) and (iv) an aquatic sloth

(T. natans) (tables 1 and 2; see the electronic supplementary

material, figures S3–S7). Second, we devised a simple, three-

stage categorization to capture the range of marine vertebrate

taphonomy at Cerro Ballena: (Stage 1) articulated, either com-

pletely or mostly; (Stage 2) disarticulated, but associated

elements and (Stage 3) isolated, separated elements. Non-

cetacean vertebrates consist of associated, semi-articulated

and/or disarticulated skeletal material (Stages 2 and 3). By con-

trast, rorqual skeletons included many fully articulated, intact

and nearly complete skeletons (Stage 1), along with disarticu-

lated skeletons with low skeletal scatter (i.e. less than the

distance of their body length; figure 3; table 2; and see the elec-

tronic supplementary material, tables S1–S11). Third, rose

diagrams of the rorquals’ skeletons long axis orientation (i.e.

vertebral column) reveal that they are orthogonal to current

flow in each level, analogous to body orientation patterns

observed for some modern mass strandings ([33]; see the elec-

tronic supplementary material, figure S8 and table S4). Lastly,

rorquals occur mostly ventral up, across all BLs (table 2). The

dominance of ventral up carcasses, combined with their high

articulation and long axis orientation, is a strong sign that

they washed in dying or dead and were then buried [34,35].

The dominance of fossil rorqual skeletons at Cerro Ballena,

across all bone-bearing levels, evokes a modern stranding

event, whereby many individual cetaceans are beachcast, either

dead or alive. Mass stranding events for socially gregarious

species of toothed whales are well documented [36], but mass

strandings for rorquals are rare. The most compelling analogue

is a rorqual mass stranding of 14 humpback whales (Megaptera
novaeangliae) over the course of five weeks along approximately

50 km of coastline around Cape Cod, MA, USA in 1987–1988

[35]. This assemblage included males, females and one calf,

whose necropsies showed no signs of trauma or predation.

Tissue assays of Atlantic mackerel (Scomber scombrus), from

stomach contents, revealed high concentrations of saxitoxins,

which are dinoflagellate neurotoxins. This evidence, along with

the documented aberrant behaviour of one of the dying

http://cerroballena.si.edu
http://cerroballena.si.edu
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Figure 4. High dynamic range images of orthogonal three-dimensional point clouds capturing adult and juvenile fossil rorqual skeletons from Cerro Ballena. (a) MPC
678; (b) MPC 684; (c) over-lapping adult and juvenile specimens, clockwise MPC 666, 665 and 667; (d ) MPC 685 and (e) MPC 675. Small-scale bars 20 cm, large-
scale bars 30 cm. True north indicated by arrow, and stratigraphic layer noted by bone-bearing level number. See http://cerroballena.si.edu and the electronic
supplementary information for more details and source data.

Table 1. Diversity of fossil marine vertebrates at Cerro Ballena, with minimum number of individuals (MNI) by bone-bearing level (BL) and with range of
skeletal articulation stages. This tabulation does not include 11 additional, unidentified large cetacean skeletons (see the electronic supplementary material,
figures S3 – S7 and S9).

clade taxon BL occurrence total MNI articulation

Mysticeti Balaenopteridae BL 1 – 4 31 Stages 1 – 3

Phocidae Acrophoca sp. BL 2 2 Stages 2 and 3

Elasmobranchii Carcharodon hastalis BL 1, 2 2 Stage 3

Odontoceti Delphinoidea BL 1 1 Stage 3

Odontoceti Physeteroidea BL 2 1 Stages 2 and 3

Odontoceti Odobenocetops sp. BL 1 1 Stage 2

Phocidae Phocidae n. gen. BL 2 1 Stage 3

Nothrotheriidae Thalassocnus natans BL 4 1 Stage 3

Osteichythes Istiophoridae BL 2 1 Stage 3

Osteichythes Xiphiidae BL 2 1 Stage 3

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20133316

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 A

pr
il 

20
21

 

http://cerroballena.si.edu
http://cerroballena.si.edu


Table 2. Taphonomic attributes of fossil rorqual skeletons at Cerro Ballena, ranked stratigraphically by BL. Number of individual specimens (NISP) is scored for
percentage oriented ventral up, skeletal articulation and scatter and total length (TL). See the electronic supplementary material, tables S1 – 11.

BL
level

% ventral
up NISP

dominant mode(s) of
articulation

average
scatter (m)

NISP for
scatter

average TL
(m)

NISP for
TL

BL-4 33 3 Stage 2 2.77 3 8.62 3

BL-3 67 3 Stage 1 2.21 3 7.63 2

BL-2 67 6 Stages 1 and 3 2.80 7 7.43 7

BL-1 92 12 Stage 1 3.45 13 7.97 9

average 75 2.83 7.91
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whales, and the geographical and temporal spans of the event,

pointed to the previously unrecognized trophic transfer of

major algal toxins. Since then, other cases of harmful algal

blooms (HABs) involving marine mammals have been reported

at similar geographical and temporal scales [37–41].

The assemblage at Cerro Ballena shares specific features

with HAB-mediated mass strandings. These similarities help

delimit the cause of death and the factors that have driven

their concentration and preservation at this site. The presence

of repeated, multispecies assemblages argues for a taxonomi-

cally broad death mechanism, such as HABs. The proximity

of many specimens, including juvenile and adult rorqual skel-

etons in direct contact or few metres apart (figure 4c), along

with different marine vertebrate taxa approximately 10 m

apart, suggests strong post-mortem spatial focusing, prior to

burial at each level (figure 1c). Intraspecific and interspecific

taphonomic variation does not eliminate this possibility, as

actualistic studies of catastrophic cetacean death assemblages

show a wide variety of decay stages [42]. HAB-mediated mor-

talities at Cerro Ballena would also partly explain the absence

of vertebrate scavenging and the absence of skeletal trauma

[43]. The general completeness of rorqual skeletons, in contrast

to the disarticulation of other marine vertebrates, reflects a size

bias or temporal delay in scavenging, permitting more disarti-

culation and abrasion. Sharks represented by isolated teeth

suggest attritional input or potential scavenging by-products

(see the electronic supplementary material, figure S9). How-

ever, billfish remains (Xiphiidae and Istiophoridae) suggest

that these large predatory consumers are similarly susceptible

to HABs, a finding that has been reported in the modern world

(see the electronic supplementary material). Isolated remains

of aquatic sloths (T. natans) may reflect incidental, attritional

input or actual HAB-mediated mortality based on extant

HAB toxin transfers (i.e. inhalation) for modern herbivorous

marine mammals [40]. Collectively, the taphonomy of Cerro

Ballena indicates that repeated marine mammal mortalities

were relatively rapid (hours to weeks in duration), geographi-

cally widespread and allochthonous (i.e. at sea). These latter

traits are all consistent with HAB-related mortalities in the

modern world, which show taphonomic signals that are tem-

porally delayed and physically remote from their source

[38,40,41,44].

The depositional environment in which vertebrate car-

casses were buried was supratidal, based on ichnological

and sedimentological evidence. We observed abundant traces

of Psilonichnus, which typically occurs on supratidal flats,

and Skolithos and Ophiomorpha, belonging to the Skolithos

ichnofacies, also common to tidal flats (figure 2; see the
electronic supplementary material, figure S10). In other parts

of the fossil record, Psilonichnus has been interpreted as a

crab trace fossil [45]. Given the unique food resource provided

by marine mammal carcasses, it is not surprising to find

scavenging traces on individual balaenopterid bones that we

attribute to crabs (figure 2e,f). These short (approx. 1 cm),

sharp and closely associated traces on the skull bones of

MPC 662 are similar in trace morphology to those described

for penguin bones from the Miocene of Argentina [46].

The lack of variation in grain size and scarcity of erosional sur-

faces in the section at Cerro Ballena further indicate a more

or less constant sedimentation encompassing approximately

10–16 kyr of deposition, based on rates for modern tidal flats

(see the electronic supplementary material). The preservation

of delicate features resembling tufted algal mats (figure 2c,

see [47] and the electronic supplementary material, figure S11)

reflects rapid post-mortem replacement by iron oxides, and it

also indicates the contemporaneous presence of algae and

high iron concentrations, which promote algal growth in this

depositional environment.

In terms of concentration mechanism, dead or dying

marine vertebrates were delivered to south-facing embayment,

protected from normal wave action by basement rocks and a

barrier bar to the west (figure 1b). This interpretation is sup-

ported by the absence of north–south-oriented wave ripples

(which should be present if this area had been directly exposed

to Pacific Ocean waves) and the presence of low-angle planar

cross-bedded sandstone at the top of the sequence, typical of

a beach or berm (figure 2). Storm surges flooding the supratidal

flats to a depth of about 1.5 m, as calculated from estimates

of wind velocity, duration and fetch (see the electronic sup-

plementary material), would have been sufficient to float the

largest carcasses from the south, allowing hydraulic sorting

to modally orient them at each level [48]. The absence of

major disarticulation and limited skeletal scatter for any

marine mammal skeleton further supports limited initial

scavenging of floating carcasses, and rapid transit time

(hours to days) between death at sea and coming to rest on a

protected, supratidal flat. Such a shallow and mostly subaerial

environment also excluded large marine scavengers. Equally,

the surrounding desert environment (which already existed

at the time) lacked sufficiently large terrestrial predators [49]

that could dismember the largest of the carcasses.

Thus, the supratidal flat worked as a taphonomic trap [19],

preserving carcasses that arrived during storms or spring tides

in an excellent environment for decay in situ, mostly free of

scavengers. As carcasses were buried under a relatively con-

tinuous rate of fine sediments, each mass stranding horizon
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yielded a discrete layer of skeletal remains. Sediment samples

under light and scanning electron microscopy lacked distinct

algal cell fragments (e.g. diatom frustules), but there were

widespread approximately 5–10 mm spherical apatite grains

encrusted in iron oxides (see the electronic supplementary

material, figure S1), which could result from mineral replace-

ment of non-siliceous algae (e.g. cyanobacteria) from coastal

HABs. However, we cannot definitively confirm their bio-

genic source nor discriminate between their pre-depositional

or post-depositional origins.

Alternative mass stranding death mechanisms lack modern

analogues or fail to explain the full range of evidence at Cerro

Ballena. Forexample, taxon-specific herding, breeding or strand-

ing behaviours do not explain the full range of taxa at the site,

which includes both pelagic and coastal species that do not inha-

bit supratidal environments (table 1). Tsunamis would have

generated death assemblages lacking large body size selectivity

(tables 1 and 2) and would result in high-energy sedimentary

structures that are not present. Pandemic causes, such as

morbillivirus, are not taxonomically broad, nor would it be

parsimonious as a recurring mechanism over 10–16 kyr. Thus,

all other alternative death mechanisms besides HABs fail to

explain the iterative preservation of four bone-bearing levels.

The excavation quarry at Cerro Ballena yielded a density of

associated, fossil marine mammal skeletons unrivaled else-

where in the world. The density of individual cetacean

specimens at Cerro Ballena, for example, is greater than other

attritional deposits in the cetacean fossil record, including

the Sharktooth Hill bonebed from the Middle Miocene of

California [23] and the Eocene lagoonal deposits of Wadi

Al-Hitan in Egypt [50]. The density of rorqual skeletons in

BL1 (see the electronic supplementary material, table S12)

alone is 10 times greater than associated, individual densi-

ties reported from the Mio-Pliocene Pisco Basin of southern

Peru [51], which are preserved in distal, marine shelf environ-

ments, and notably lack multiple marine mammal species in

close association (less than 10 m). Cerro Ballena is also sur-

prising in its abundance of complete rorqual skeletons

because baleen whale strandings are comparatively rare in

the modern world. We propose that this ecological asymmetry

arises from the shifted baseline of baleen whale abundances.

In remote areas today, such as the Southern Ocean, there are

examples of super-aggregations that are unusual by today’s

standards, but match historical and anecdotal accounts of

baleen whale abundances prior to industrial whaling [52].

Evidence for HAB-mediated death assemblages of marine

vertebrates in the fossil record is limited to only a few cases

because of the difficulty in attributing HABs as a causal

agent [53,54]. Modern analogues of marine mammal deaths

caused by HABs outline a likely pathway that occurred
repeatedly at this site during the Late Miocene. We propose

that toxins, generated by HABs, poisoned multiple species of

marine vertebrates, through ingestion of contaminated prey

and/or inhalation, causing relatively rapid death at sea.

Carcasses then floated towards the coastline, where they

entered the estuary and were transported by locally generated,

northward propagating storm waves into a restricted suprati-

dal flat, where they were buried to the exclusion of major

scavenging and disarticulation. This sequence was recor-

ded four times during the deposition of sediment (approx.

10–16 kyr) at Cerro Ballena. The conditions that lead to this

repeated phenomenon are tied to upwelling systems along

westerly margins of continental coastlines [55]. Along the

coast of western South America, ferruginous runoff from the

Andes leads to increased iron in the ocean, which boosts pro-

ductivity where iron is a limiting nutrient for phytoplankton

growth [55], while also promoting HABs (e.g. cyanobacteria

and dinoflagellates [44]). The antiquity of these processes

probably pre-dates modern tectonic configurations, although

it has not been documented in the fossil record until now.

We propose that upwelling systems, fuelled by iron-rich

runoff, in other regions of the world will have similar, repeated

accumulations of marine consumers [56].
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