Published:26 July 2017https://doi.org/10.1098/rsos.170204
References
- 1Meyer H. 1839 Pistosaurus longaevus aus dem Muschelkalke der Gegend von Bayreuth. In Neues Jahrb. Für Mineral. Geogn. Geol. Petrefakten-Kunde, pp. 699–701. Google Scholar
- 2Geissler G. 1895 Über neue Saurier-Funde aus dem Muschelkalk von Bayreuth. Z. Dtsch. Geol. Ges. 47, 331–355. Google Scholar
- 3Huene F. 1948 Pistosaurus, a middle Triassic plesiosaur. Am. J. Sci. 246, 46–52. (doi:10.2475/ajs.246.1.46) Crossref, Web of Science, Google Scholar
- 4Diedrich CG. 2013 The oldest ‘subaquatic flying’ reptile in the world—Pistosaurus longaevus Meyer, 1839 (Sauropterygia) from the Middle Triassic of Europe. Bull N. M. Mus Nat. Hist Sci 61, 169–215. Google Scholar
- 5Diedrich CG. 2013 Shallow marine sauropterygian reptile biodiversity and change in The Bad Sulza formation (Illyrian, Middle Triassic) of Central Germany, and a contribution to the evolution of Nothosaurus in the Germanic Basin. Triassic Syst. New Dev. Stratigr. Paleontol. Bull. 61, 132. Google Scholar
- 6Sander PM, Rieppel OC, Bucher H. 1997 A new pistosaurid (Reptilia: Sauropterygia) from the Middle Triassic of Nevada and its implications for the origin of the plesiosaurs. J. Vertebr. Paleontol. 17, 526–533. (doi:10.1080/02724634.1997.10010999) Crossref, Web of Science, Google Scholar
- 7Rieppel O. 2000 Handbook of Paleoherpetology / Sauropterygia I.: Placodontia, Pachypleurosauria, Nothosauroidea, Pistosauroidea: Part 12A. Stuttgart. Google Scholar
- 8Rieppel O, Sander PM, Storrs GW. 2002 The skull of the pistosaur Augustasaurus from the Middle Triassic of northwestern Nevada. J. Vertebr. Paleontol. 22, 577–592. (doi:10.1671/0272-4634(2002)022[0577:TSOTPA]2.0.CO;2) Crossref, Web of Science, Google Scholar
- 9Cheng Y-N, Sato T, Wu X-C, Li C. 2006 First complete pistosauroid from the Triassic of China. J. Vertebr. Paleontol. 26, 501–504. (doi:10.1671/0272-4634(2006)26[501:FCPFTT]2.0.CO;2) Crossref, Web of Science, Google Scholar
- 10Ma L-T, Jiang D-Y, Rieppel O, Motani R, Tintori A. 2015 A new pistosauroid (Reptilia, Sauropterygia) from the late Ladinian Xingyi marine reptile level, southwestern China. J. Vertebr. Paleontol. 35, e881832. (doi:10.1080/02724634.2014.881832) Crossref, Web of Science, Google Scholar
- 11Klein N. 2010 Long bone histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin provides unexpected implications for phylogeny. PLoS ONE 5, e11613. (doi:10.1371/journal.pone.0011613) Crossref, PubMed, Web of Science, Google Scholar
- 12Krahl A, Klein N, Sander PM. 2013 Evolutionary implications of the divergent long bone histologies of Nothosaurus and Pistosaurus (Sauropterygia, Triassic). BMC Evol. Biol. 13, 1. (doi:10.1186/1471-2148-13-123) Crossref, PubMed, Web of Science, Google Scholar
- 13Resnick DLR. 2002 Diagnosis of bone and joint disorders, 4th edn. Philadelphia, PA: Saunders. Google Scholar
- 14Rothschild BM, Martin LD. 2006 Skeletal impact of disease. Albuquerque, NM: New Mexico Museum of Natural History. Google Scholar
- 15Rothschild BM. 1987 Decompression syndrome in fossil marine turtles. Ann. Carnegie Mus. 56, 253–358. Google Scholar
- 16Rothschild BM, Martin LD. 1987 Avascular necrosis: occurrence in diving Cretaceous mosasaurs. Science 236, 75–77. (doi:10.1126/science.236.4797.75) Crossref, PubMed, Web of Science, Google Scholar
- 17Rothschild BM, Xiaoting Z, Martin LD. 2012 Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs. Naturwissenschaften 99, 443–448. (doi:10.1007/s00114-012-0918-0) Crossref, PubMed, Web of Science, Google Scholar
- 18Rothschild BM, Naples V. 2013 Decompression syndrome and diving behavior in Odontochelys, the first turtle. Acta Palaeontol. Pol. 60, 163–167. (doi:10.4202/app.2012.0113) Web of Science, Google Scholar
- 19Rothschild BM, Storrs GW. 2003 Decompression syndrome in plesiosaurs (Sauropterygia: Reptilia). J. Vertebr. Paleontol. 23, 324–328. (doi:10.1671/0272-4634(2003)023[0324:DSIPSR]2.0.CO;2) Crossref, Web of Science, Google Scholar
- 20Anné J, Hedrick BP, Schein JP. 2016 First diagnosis of septic arthritis in a dinosaur. R. Soc. open sci. 3, 160222. (doi:10.1098/rsos.160222) Link, Web of Science, Google Scholar
- 21von Meyer H. 1847 Die Saurier des Muschelkalkes mit Rücksicht auf die Saurier aus buntem Sandstein. Frankfurt am Main, Germany: Heinrich Keller. Google Scholar
- 22Szulc J. 2007 Stratigraphy and correlation with Tethys and other Germanic subbasins. In Pan-European Correlation of the Epicontinental Triassic 4th Meeting, International Workshop on the Triassic of southern Poland, September 3–8, 2007 (eds J Szulc, A Becker). Google Scholar
- 23Kwon K-Y, Wang E, Chung A, Chang N, Lee S-W. 2009 Effect of salinity on hydroxyapatite dissolution studied by atomic force microscopy. J. Phys. Chem. C 113, 3369–3372. (doi:10.1021/jp810414z) Crossref, Web of Science, Google Scholar
- 24Dorozhkin SV. 2012 Dissolution mechanism of calcium apatites in acids: a review of literature. World J. Methodol. 2, 1–17. (doi:10.5662/wjm.v2.i1.1) Crossref, PubMed, Google Scholar
- 25Surmik D, Boczarowski A, Balin K, Dulski M, Szade J, Kremer B, Pawlicki R. 2016 Spectroscopic studies on organic matter from Triassic reptile bones, Upper Silesia, Poland. PLoS ONE 11, e0151143. (doi:10.1371/journal.pone.0151143) Crossref, PubMed, Web of Science, Google Scholar
- 26Garskaite E, Gross K-A, Yang S-W, Yang TC-K, Yang J-C, Kareiva A. 2014 Effect of processing conditions on the crystallinity and structure of carbonated calcium hydroxyapatite (CHAp). CrystEngComm 16, 3950. (doi:10.1039/c4ce00119b) Crossref, Web of Science, Google Scholar
- 27Koutsopoulos S. 2002 Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. 62, 600–612. (doi:10.1002/jbm.10280) Crossref, PubMed, Web of Science, Google Scholar
- 28Sinyayev VA, Shustikova ES, Griggs D, Dorofeev DV. 2005 The nature of PO bonds in the precipitated amorphous calcium phosphates and calcium magnesium phosphates. Glass Phys. Chem. 31, 671–675. (doi:10.1007/s10720-005-0112-y) Crossref, Web of Science, Google Scholar
- 29Antonakos A, Liarokapis E, Leventouri T. 2007 Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28, 3043–3054. (doi:10.1016/j.biomaterials.2007.02.028) Crossref, PubMed, Web of Science, Google Scholar
- 30Paşcu EI, Stokes J, McGuinness GB. 2013 Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 4905–4916. (doi:10.1016/j.msec.2013.08.012) Crossref, PubMed, Web of Science, Google Scholar
- 31Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C. 2007 Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater. Sci. Eng. C 27, 855–864. (doi:10.1016/j.msec.2006.10.002) Crossref, Web of Science, Google Scholar
- 32Fleet ME, Liu X. 2004 Location of type B carbonate ion in type A–B carbonate apatite synthesized at high pressure. J. Solid State Chem. 177, 3174–3182. (doi:10.1016/j.jssc.2004.04.002) Crossref, Web of Science, Google Scholar
- 33Penel G, Leroy G, Rey C, Bres E. 1998 MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif. Tissue Int. 63, 475–481. (doi:10.1007/s002239900561) Crossref, PubMed, Web of Science, Google Scholar
- 34Morris MD, Finney WF. 2004 Recent developments in Raman and infrared spectroscopy and imaging of bone tissue. J. Spectrosc. 18, 155–159. (doi:10.1155/2004/765753) Crossref, Web of Science, Google Scholar
- 35Awonusi A, Morris MD, Tecklenburg MMJ. 2007 Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif. Tissue Int. 81, 46–52. (doi:10.1007/s00223-007-9034-0) Crossref, PubMed, Web of Science, Google Scholar
- 36de Mul FF, Hottenhuis MH, Bouter P, Greve J, Arends J, ten Bosch JJ. 1986 Micro-Raman line broadening in synthetic carbonated hydroxyapatite. J. Dent. Res. 65, 437–440. (doi:10.1177/00220345860650031301) Crossref, PubMed, Web of Science, Google Scholar
- 37Mandair GS, Morris MD. 2015 Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Rep. 4, 620. (doi:10.1038/bonekey.2014.115) Crossref, PubMed, Web of Science, Google Scholar
- 38Sauer GR, Zunic WB, Durig JR, Wuthier RE. 1994 Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates. Calcif. Tissue Int. 54, 414–420. (doi:10.1007/BF00305529) Crossref, PubMed, Web of Science, Google Scholar
- 39Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E. 1997 Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. J. Mater. Sci. Mater. Med. 8, 271–276. (doi:10.1023/A:1018504126866) Crossref, PubMed, Web of Science, Google Scholar
- 40Morris MD, Mandair GS. 2011 Raman assessment of bone quality. Clin. Orthop. Relat. Res. 469, 2160–2169. (doi:10.1007/s11999-010-1692-y) Crossref, PubMed, Web of Science, Google Scholar
- 41Kaźmierczak J, Kremer B, Altermann W, Franchi I. 2016 Tubular microfossils from ∼2.8 to 2.7 Ga-old lacustrine deposits of South Africa: a sign for early origin of eukaryotes? Precambrian Res. 286, 180–194. (doi:10.1016/j.precamres.2016.10.001) Crossref, Web of Science, Google Scholar
- 42Mangialardo S, Cottignoli V, Cavarretta E, Salvador L, Postorino P, Maras A. 2012 Pathological biominerals: Raman and infrared studies of bioapatite deposits in human heart valves. Appl. Spectrosc. 66, 1121–1127. (doi:10.1366/12-06606) Crossref, PubMed, Web of Science, Google Scholar
- 43Pasteris JD, Yoder CH, Wopenka B. 2014 Molecular water in nominally unhydrated carbonated hydroxylapatite: the key to a better understanding of bone mineral. Am. Mineral. 99, 16–27. (doi:10.2138/am.2014.4627) Crossref, Web of Science, Google Scholar
- 44Li Z, Pasteris JD. 2014 Tracing the pathway of compositional changes in bone mineral with age: preliminary study of bioapatite aging in hypermineralized dolphin's bulla. Biochim. Biophys. Acta 1840, 2331–2339. (doi:10.1016/j.bbagen.2014.03.012) Crossref, PubMed, Web of Science, Google Scholar
- 45Sues H-D. 1987 Postcranial skeleton of Pistosaurus and interrelationships of the Sauropterygia (Diapsida). Zool. J. Linn. Soc. 90, 109–131. (doi:10.1111/j.1096-3642.1987.tb01351.x) Crossref, Web of Science, Google Scholar
- 46Rothschild BM, Schultze H-P, Pellegrini R. 2012 Herpetological osteopathology. New York, NY: Springer. Crossref, Google Scholar
- 47Sanchez S, Tafforeau P, Clack JA, Ahlberg PE. 2016 Life history of the stem tetrapod Acanthostega revealed by synchrotron microtomography. Nature 537, 408–411. (doi:10.1038/nature19354) Crossref, PubMed, Web of Science, Google Scholar
- 48Huchzermeyer FW. 2003 Crocodiles: biology, husbandry and diseases. 1st edn. Wallingford, Oxon, UK; Cambridge, MA: CABI. Crossref, Google Scholar
- 49Ogden JA, Rhodin AGJ, Conlogue GJ, Light TR. 1981 Pathobiology of septic arthritis and contiguous osteomyelitis in a leatherback turtle (Dermochelys coriacea). J. Wildl. Dis. 17, 277–287. (doi:10.7589/0090-3558-17.2.277) Crossref, PubMed, Web of Science, Google Scholar
- 50Rothschild BM, Schultze H-P, Pellegrini R. 2013 Osseous and other hard tissue pathologies in yurtles and abnormalities of mineral deposition. In Morphology and evolution of turtles (eds Brinkman DB, Holroyd PA, Gardner JD), pp. 501–534. Dordrecht, The Netherlands: Springer. Crossref, Google Scholar
- 51Myszka A. 2016 Osteoarthritis in past human populations. An anthropological perspective. 1st edn. Poznań, Poland: Adam Mickiewicz University. Google Scholar
- 52Chevrinais M, Balan E, Cloutier R. 2015 New insights in the ontogeny and taphonomy of the Devonian acanthodian Triazeugacanthus affinis from the Miguasha Fossil-Lagerstätte, Eastern Canada. Minerals 6, 1. (doi:10.3390/min6010001) Crossref, Web of Science, Google Scholar
- 53Hadjigogos K. 2003 The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med. 45, 7–13. PubMed, Web of Science, Google Scholar
- 54Hitchon CA, El-Gabalawy HS. 2004 Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 6, 1. (doi:10.1186/ar1447) Crossref, Web of Science, Google Scholar
- 55Henrotin Y., Bruckner P, Pujol J-P. 2003 The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr. Cartil. 11, 747–755. (doi:10.1016/S1063-4584(03)00150-X) Crossref, PubMed, Web of Science, Google Scholar
- 56Greenwald RA. 1991 Oxygen radicals, inflammation, and arthritis: pathophysiological considerations and implications for treatment. Semin. Arthritis Rheum. 20, 219–240. (doi:10.1016/0049-0172(91)90018-U) Crossref, PubMed, Web of Science, Google Scholar