References
- 1Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N. 2008 Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. (doi:10.1016/j.tree.2008.02.008) Crossref, PubMed, Web of Science, Google Scholar
- 2Allendorf FW, Hard JJ. 2009 Human-induced evolution caused by unnatural selection through harvest of wild animals. Proc. Natl Acad. Sci. USA 106, 9987–9994. (doi:10.1073/pnas.0901069106) Crossref, PubMed, Web of Science, Google Scholar
- 3Darimont CT, Carlson SM, Kinnison MT, Paquet PC, Reimchen TE, Wilmers CC. 2009 Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954. (doi:10.1073/pnas.0809235106) Crossref, PubMed, Web of Science, Google Scholar
- 4Sutter DAH, Suski CD, Philipp DP, Klefoth T, Wahl DH, Kersten P, Cooke SJ, Arlinghaus R. 2012 Recreational fishing selectively captures individuals with the highest fitness potential. Proc. Natl Acad. Sci. USA 109, 20 960–20 965. (doi:10.1073/pnas.1212536109) Crossref, Web of Science, Google Scholar
- 5Coltman DW, O'Donoghue P, Jorgenson JT, Hogg JT, Strobeck C, Festa-Bianchet M. 2003 Undesirable evolutionary consequences of trophy hunting. Nature 426, 655–658. (doi:10.1038/nature02177) Crossref, PubMed, Web of Science, Google Scholar
- 6Cooke S, Suski C, Ostrand K, Wahl D, Philipp D. 2007 Physiological and behavioral consequences of long-term artificial selection for vulnerability to recreational angling in a teleost fish. Physiol. Biochem. Zool. 80, 480–490. (doi:10.1086/520618) Crossref, PubMed, Web of Science, Google Scholar
- 7Philipp DP, Cooke SJ, Claussen JE, Koppelman JB, Suski CD, Burkett DP. 2009 Selection for vulnerability to angling in largemouth bass. Trans. Am. Fish. Soc. 138, 189–199. (doi:10.1577/t06-243.1) Crossref, Web of Science, Google Scholar
- 8Law R. 2000 Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668. (doi:10.1006/jmsc.2000.0731) Crossref, Web of Science, Google Scholar
- 9Kuparinen A, Kuikka S, Merilä J. 2009 Estimating fisheries-induced selection: traditional gear selectivity research meets fisheries-induced evolution. Evol. Appl. 2, 234–243. (doi:10.1111/j.1752-4571.2009.00070.x) Crossref, PubMed, Web of Science, Google Scholar
- 10Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann U. 2004 Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932–935. (doi:10.1038/nature02430) Crossref, PubMed, Web of Science, Google Scholar
- 11van Walraven L, Mollet FM, van Damme CJG, Rijnsdorp AD. 2010 Fisheries-induced evolution in growth, maturation and reproductive investment of the sexually dimorphic North Sea plaice (Pleuronectes platessa L.). J. Sea Res. 64, 85–93. (doi:10.1016/j.seares.2009.07.003) Crossref, Web of Science, Google Scholar
- 12Heino M 2013 Can fisheries-induced evolution shift reference points for fisheries management? ICES J. Mar. Sci. 70, 707–721. (doi:10.1093/icesjms/fst077) Crossref, Web of Science, Google Scholar
- 13Uusi-Heikkilä S, Wolter C, Klefoth T, Arlinghaus R. 2008 A behavioral perspective on fishing-induced evolution. Trends Ecol. Evolu. 23, 419–421. (doi:10.1016/j.tree.2008.04.006) Crossref, PubMed, Web of Science, Google Scholar
- 14Jørgensen C 2007 Managing evolving fish stocks. Science 318, 1247–1248. (doi:10.1126/science.1148089) Crossref, PubMed, Web of Science, Google Scholar
- 15Redpath TD, Cooke SJ, Suski CD, Arlinghaus R, Couture P, Wahl DH, Philipp DP. 2010 The metabolic and biochemical basis of vulnerability to recreational angling after three generations of angling-induced selection in a teleost fish. Can. J. Fish. Aquat. Sci. 67, 1983–1992. (doi:10.1139/f10-120) Crossref, Web of Science, Google Scholar
- 16Olsen EM, Heupel MR, Simpfendorfer CA, Moland E. 2012 Harvest selection on Atlantic cod behavioral traits: implications for spatial management. Ecol. Evol. 2, 1549–1562. (doi:10.1002/ece3.244) Crossref, PubMed, Web of Science, Google Scholar
- 17Klefoth T, Pieterek T, Arlinghaus R. 2013 Impacts of domestication on angling vulnerability of common carp, Cyprinus carpio: the role of learning, foraging behaviour and food preferences. Fish. Manage. Ecol. 20, 174–186. (doi:10.1111/j.1365-2400.2012.00865.x) Crossref, Web of Science, Google Scholar
- 18Diaz Pauli B, Wiech M, Heino M, Utne-Palm AC. 2015 Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery. J. Fish Biol. 86, 1030–1045. (doi:10.1111/jfb.12620) Crossref, PubMed, Web of Science, Google Scholar
- 19Biro PA, Post JR. 2008 Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc. Natl Acad. Sci. USA 105, 2919–2922. (doi:10.1073/pnas.0708159105) Crossref, PubMed, Web of Science, Google Scholar
- 20Wilson ADM, Binder TR, McGrath KP, Cooke SJ, Godin J-GJ. 2011 Capture technique and fish personality: angling targets timid bluegill sunfish, Lepomis macrochirus. Can. J. Fish. Aquat. Sci. 68, 749–757. (doi:10.1139/f2011-019) Crossref, Web of Science, Google Scholar
- 21Cooke SJ, Donaldson MR, Hinch SG, Crossin GT, Patterson DA, Hanson KC, English KK, Shrimpton JM, Farrell AP. 2009 Is fishing selective for physiological and energetic characteristics in migratory adult sockeye salmon? Evol. Appl. 2, 299–311. (doi:10.1111/j.1752-4571.2009.00076.x) Crossref, PubMed, Web of Science, Google Scholar
- 22Heino M, Godø OR. 2002 Fisheries-induced selection pressures in the context of sustainable fisheries. Bull. Mar. Sci. 70, 639–656. Web of Science, Google Scholar
- 23Main J, Sangster GI. 1983 Fish reactions to trawl gear: a study comparing light and heavy ground gear. Sco. Fish. Res. Rep. 27, 1–17. Google Scholar
- 24Winger PD, He P, Walsh SJ. 2000 Factors affecting the swimming endurance and catchability of Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 57, 1200–1207. (doi:10.1139/f00-049) Crossref, Web of Science, Google Scholar
- 25Winger PD, Eayrs S, Glass C. 2010 Fish behaviour near bottom trawls. In Behavior of marine fishes: capture processes and conservation challenges (ed. He P), pp. 67–103. Singapore: Blackwell Publishing. Google Scholar
- 26Glass CW, Wardle CS. 1989 Comparison of the reactions of fish to a trawl gear, at high and low light intensities. Fish. Res. 7, 249–266. (doi:10.1016/0165-7836(89)90059-3) Crossref, Web of Science, Google Scholar
- 27Reznick DN, Ghalambor CK. 2005 Can commercial fishing cause evolution? Answers from guppies (Poecilia reticulata). Can. J. Fish. Aquat. Sci. 62, 791–801. (doi:10.1139/f05-079) Crossref, Web of Science, Google Scholar
- 28Conover DO, Baumann H. 2009 The role of experiments in understanding fishery-induced evolution. Evol. Appl. 2, 276–290. (doi:10.1111/j.1752-4571.2009.00079.x) Crossref, PubMed, Web of Science, Google Scholar
- 29Endler JA. 1996 Natural selection in the wild. Princeton, NJ: Princeton University Press. Google Scholar
- 30
- 31Killen SS. 2014 Growth trajectory influences temperature preference in fish through an effect on metabolic rate. J. Anim. Ecol. 83, 1513–1522. (doi:10.1111/1365-2656.12244) Crossref, PubMed, Web of Science, Google Scholar
- 32Killen SS, Costa I, Brown JA, Gamperl AK. 2007 Little left in the tank: metabolic scaling in marine teleosts and its implications for aerobic scope. Proc. R. Soc. B 274, 431–438. (doi:10.1098/rspb.2006.3741) Link, Web of Science, Google Scholar
- 33Clark TD, Sandblom E, Jutfelt F. 2013 Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782. (doi:10.1242/jeb.084251) Crossref, PubMed, Web of Science, Google Scholar
- 34Steffensen J. 1989 Some errors in respirometry of aquatic breathers: how to avoid and correct for them. Fish Physiol. Biochem. 6, 49–59. (doi:10.1007/bf02995809) Crossref, PubMed, Web of Science, Google Scholar
- 35Killen SS, Marras S, Steffensen JF, McKenzie DJ. 2012 Aerobic capacity influences the spatial position of individuals within fish schools. Proc. R. Soc. B 279, 357–364. (doi:10.1098/rspb.2011.1006) Link, Web of Science, Google Scholar
- 36Svendsen JC, Banet AI, Christensen RHB, Steffensen JF, Aarestrup K. 2013 Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata). J. Exp. Biol. 216, 3564–3574. (doi:10.1242/jeb.083089) Crossref, PubMed, Web of Science, Google Scholar
- 37Lee CG, Farrell AP, Lotto A, Hinch SG, Healey MC. 2003 Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming. J. Exp. Biol. 206, 3253–3260. (doi:10.1242/jeb.00548) Crossref, PubMed, Web of Science, Google Scholar
- 38Marras S, Claireaux G, McKenzie DJ, Nelson JA. 2010 Individual variation and repeatability in aerobic and anaerobic swimming performance of European sea bass, Dicentrarchus labrax. J. Exp. Biol. 213, 26–32. (doi:10.1242/jeb.032136) Crossref, PubMed, Web of Science, Google Scholar
- 39Peake SJ, Farrell AP. 2004 Locomotory behaviour and post-exercise physiology in relation to swimming speed, gait transition and metabolism in free-swimming smallmouth bass (Micropterus dolomieu). J. Exp. Biol. 207, 1563–1575. (doi:10.1242/jeb.00927) Crossref, PubMed, Web of Science, Google Scholar
- 40Domenici P, Blake R. 1997 The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178. Crossref, PubMed, Web of Science, Google Scholar
- 41Ydenberg RC, Dill LM. 1986 The economics of fleeing from predators. Adv. Study Behav. 16, 229–249. (doi:10.1016/S0065-3454(08)60192-8) Crossref, Web of Science, Google Scholar
- 42Farrell AP. 2008 Comparisons of swimming performance in rainbow trout using constant acceleration and critical swimming speed tests. J. Fish Biol. 72, 693–710. (doi:10.1111/j.1095-8649.2007.01759.x) Crossref, Web of Science, Google Scholar
- 43Lessells CM, Boag PT. 1987 Unrepeatable repeatabilities: a common mistake. Auk 104, 116–121. (doi:10.2307/4087240) Crossref, Web of Science, Google Scholar
- 44Enberg K, Jørgensen C, Dunlop ES, Varpe Ø, Boukal DS, Baulier L, Eliassen S, Heino M. 2012 Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence. Mar. Ecol. 33, 1–25. (doi:10.1111/j.1439-0485.2011.00460.x) Crossref, Web of Science, Google Scholar
- 45Heino M. 1998 Management of evolving fish stocks. Can. J. Fish. Aquat. Sci. 55, 1971–1982. (doi:10.1139/f98-089) Crossref, Web of Science, Google Scholar
- 46Godø OR, Pennington M, Vølstad JH. 1990 Effect of tow duration on length composition of trawl catches. Fish. Res. 9, 165–179. (doi:10.1016/0165–7836(90)90062-Z) Crossref, Web of Science, Google Scholar
- 47Burton T, Killen SS, Armstrong JD, Metcalfe NB. 2011 What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. R. Soc. B 278, 3465–3473. (doi:10.1098/rspb.2011.1778) Link, Web of Science, Google Scholar
- 48Killen SS, Marras S, Ryan MR, Domenici P, McKenzie DJ. 2012 A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. Funct. Ecol. 26, 134–143. (doi:10.1111/j.1365-2435.2011.01920.x) Crossref, Web of Science, Google Scholar
- 49Killen SS, Marras S, McKenzie DJ. 2011 Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. J. Anim. Ecol. 80, 1024–1033. (doi:10.1111/j.1365-2656.2011.01844.x) Crossref, PubMed, Web of Science, Google Scholar
- 50Rudstam LG, Magnuson JJ, Tonn WM. 1984 Size selectivity of passive fishing gear: a correction for encounter probability applied to gill nets. Can. J. Fish. Aquat. Sci. 41, 1252–1255. (doi:10.1139/f84-151) Crossref, Web of Science, Google Scholar
- 51Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P. 2013 Environmental stressors alter relationships between physiology and behaviour. Trends Ecol. Evol. 28, 651–658. (doi:10.1016/j.tree.2013.05.005) Crossref, PubMed, Web of Science, Google Scholar
- 52Winger PD, Walsh SJ, He P, Brown JA. 2004 Simulating trawl herding in flatfish: the role of fish length in behaviour and swimming characteristics. ICES J. Mar. Sci. 61, 1179–1185. (doi:10.1016/j.icesjms.2004.07.015) Crossref, Web of Science, Google Scholar
- 53Breen M, Dyson J, O'Neill FG, Jones E, Haigh M. 2004 Swimming endurance of haddock (Melanogrammus aeglefinus L.) at prolonged and sustained swim speeds, and its role in their capture by towed fishing gears. ICES J. Mar. Sci. 61, 1071–1079. (doi:10.1016/j.icesjms.2004.06.014) Crossref, Web of Science, Google Scholar
- 54Pörtner HO, Farrell AP. 2008 Physiology and climate change. Science 322, 690–692. (doi:10.1126/science.1163156) Crossref, PubMed, Web of Science, Google Scholar