Published:19 July 2016https://doi.org/10.1098/rstb.2015.0133
References
- 1Labandeira CC. 2005 Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends Ecol. Evol. 20, 253–262. (doi:10.1016/j.tree.2005.03.002) Crossref, PubMed, Web of Science, Google Scholar
- 2Shear WA. 1991 The early development of terrestrial ecosystems. Nature 351, 283–289. (doi:10.1038/351283a0) Crossref, Web of Science, Google Scholar
- 3Strother PK, Battison L, Brasier MD, Wellman CH. 2011 Earth's earliest non-marine eukaryotes. Nature 473, 505–509. (doi:10.1038/nature09943) Crossref, PubMed, Web of Science, Google Scholar
- 4Clarke JT, Warnock R, Donoghue PCJ. 2011 Establishing a time-scale for plant evolution. New Phytol. 192, 266–301. (doi:10.1111/j.1469-8137.2011.03794.x) Crossref, PubMed, Web of Science, Google Scholar
- 5Kenrick P, Wellman CH, Schneider H, Edgecombe GD. 2012 A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Phil. Trans. R. Soc. B 367, 519–536. (doi:10.1098/rstb.2011.0271) Link, Web of Science, Google Scholar
- 6Redecker D, Kodner R, Graham LE. 2000 Glomalean fungi from the Ordovician. Science 289, 1920–1921. (doi:10.1126/science.289.5486.1920) Crossref, PubMed, Web of Science, Google Scholar
- 7Little C. 1983 The colonisation of land: origins and adaptations of terrestrial animals, 300 p. Cambridge, UK: Cambridge University Press. Google Scholar
- 8Rota-Stabelli O, Daley AC, Pisani D. 2013 Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23, 392–398. (doi:10.1016/j.cub.2013.01.026) Crossref, PubMed, Web of Science, Google Scholar
- 9Richardson A, Araujo PB. 2015 Lifestyles of terrestrial crustaceans. In M Thiel, L Walting (eds), The natural history of the Crustacea. Lifestyles and feeding biology, pp. 299–336. New York, NY: Oxford University Press. Google Scholar
- 10Little C. 1990 The terrestrial invasion: an ecophysiological approach to the origins of land animals, 304 p. Cambridge, UK: Cambridge University Press. Google Scholar
- 11Dunlop JA, Scholtz G, Selden PA. 2013 Water-to-Land Transitions. In Arthropod Biology and Evolution, pp. 417–439. Berlin, Germany: Springer Berlin Heidelberg. Crossref, Google Scholar
- 12Gordon MS, Olson EC. 1995 Invasions of the land: the transitions of organisms from aquatic to terrestrial life. New York, NY: Columbia University Press. Google Scholar
- 13Selden PA. 2001 Terrestrialization (Precambrian–Devonian). In eLS. Hoboken, NJ: John Wiley & Sons, Ltd. (doi:10.10.1038/npg.els.0001641) Google Scholar
- 14Niimura Y. 2009 On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol. Evol. 1, 34–44. (doi:10.1093/gbe/evp003) Crossref, PubMed, Web of Science, Google Scholar
- 15Niimura Y, Nei M. 2005 Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc. Natl Acad. Sci. USA 102, 6039–6044. (doi:10.1073/pnas.0501922102) Crossref, PubMed, Web of Science, Google Scholar
- 16Vieira FG, Rozas J. 2011 Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 3, 476–490. (doi:10.1093/gbe/evr033) Crossref, PubMed, Web of Science, Google Scholar
- 17Felsenstein J. 1985 Phylogenies and the comparative method. Am. Nat. 125, 1–15. (doi:10.1086/284325) Crossref, Web of Science, Google Scholar
- 18Stork NE, McBroom J, Gely C, Hamilton AJ. 2015 New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl Acad. Sci. USA 112, 7519–7523. (doi:10.1073/pnas.1502408112) Crossref, PubMed, Web of Science, Google Scholar
- 19Giribet G, Edgecombe GD. 2012 Reevaluating the arthropod tree of life. Annu. Rev. Entomol. 57, 167–186. (doi:10.1146/annurev-ento-120710-100659) Crossref, PubMed, Web of Science, Google Scholar
- 20Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ. 2011 A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc. R. Soc. B 278, 298–306. (doi:10.1098/rspb.2010.0590) Link, Web of Science, Google Scholar
- 21Misof B 2014 Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767. (doi:10.1126/science.1257570) Crossref, PubMed, Web of Science, Google Scholar
- 22Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T. 2014 A transcriptome approach to ecdysozoan phylogeny. Mol. Phylogenet. Evol. 80, 79–87. (doi:10.1016/j.ympev.2014.08.001) Crossref, PubMed, Web of Science, Google Scholar
- 23Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW. 2010 Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463, 1079–1083. (doi:10.1038/nature08742) Crossref, PubMed, Web of Science, Google Scholar
- 24Wägele JW, Kück P. 2013 Arthropod phylogeny and the origin of Tracheata (=Atelocerata) from Remipedia-like ancestors. In Deep metazoan phylogeny: the backbone of the tree of life, pp. 285–341. Berlin, Germany: De Gruyter. Google Scholar
- 25Wheeler WC, Giribet G, Edgecombe GD. 2004 Arthropod systematics. The comparative study of genomic, anatomical, and paleontological information. In Assembling the tree of life, pp. 281–295. New York, NY: Oxford University Press. Google Scholar
- 26Friedrich M, Tautz D. 1995 Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376, 165–167. (doi:10.1038/376165a0) Crossref, PubMed, Web of Science, Google Scholar
- 27Cook CE, Smith ML, Telford MJ, Bastianello A, Akam M. 2001 Hox genes and the phylogeny of the arthropods. Curr. Biol. 11, 759–763. (doi:10.1016/S0960-9822(01)00222-6) Crossref, PubMed, Web of Science, Google Scholar
- 28Pisani D, Poling LL, Lyons-Weiler M, Hedges SB. 2004 The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol. 2, 1. (doi:10.1186/1741-7007-2-1) Crossref, PubMed, Web of Science, Google Scholar
- 29Mallatt JM, Garey JR, Shultz JW. 2004 Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol. Phylogenet. Evol. 31, 178–191. (doi:10.1016/j.ympev.2003.07.013) Crossref, PubMed, Web of Science, Google Scholar
- 30Meusemann K 2010 A phylogenomic approach to resolve the arthropod tree of life. Mol. Biol. Evol. 27, 2451–2464. (doi:10.1093/molbev/msq130) Crossref, PubMed, Web of Science, Google Scholar
- 31Boore JL, Lavrov DV, Brown WM. 1998 Gene translocation links insects and crustaceans. Nature 392, 667–668. (doi:10.1038/33577) Crossref, PubMed, Web of Science, Google Scholar
- 32Zrzavý J, Štys P. 1997 The basic body plan of arthropods: insights from evolutionary morphology and developmental biology. J. Evol. Biol. 10, 353–367. (doi:10.1046/j.1420-9101.1997.10030353.x) Crossref, Web of Science, Google Scholar
- 33Richter S. 2002 The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org. Divers. Evol. 2, 217–237. (doi:10.1078/1439-6092-00048) Crossref, Web of Science, Google Scholar
- 34Regier JC, Shultz JW, Kambic RE. 2005 Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. B 272, 395–401. (doi:10.1098/rspb.2004.2917) Link, Web of Science, Google Scholar
- 35Regier JC 2008 Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Syst. Biol. 57, 920–938. (doi:10.1080/10635150802570791) Crossref, PubMed, Web of Science, Google Scholar
- 36Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G. 2014 Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol. Biol. Evol. 31, 2963–2984. (doi:10.1093/molbev/msu235) Crossref, PubMed, Web of Science, Google Scholar
- 37Rota-Stabelli O, Lartillot N, Philippe H, Pisani D. 2013 Serine codon-usage bias in deep phylogenomics: pancrustacean relationships as a case study. Syst. Biol. 62, 121–133. (doi:10.1093/sysbio/sys077) Crossref, PubMed, Web of Science, Google Scholar
- 38Giribet G, Edgecombe GD, Wheeler WC. 2001 Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157–161. (doi:10.1038/35093097) Crossref, PubMed, Web of Science, Google Scholar
- 39Bernt M, Braband A, Middendorf M, Misof B, Rota-Stabelli O, Stadler PF. 2013 Bioinformatics methods for the comparative analysis of metazoan mitochondrial genome sequences. Mol. Phylogenet. Evol. 69, 320–327. (doi:10.1016/j.ympev.2012.09.019) Crossref, PubMed, Web of Science, Google Scholar
- 40Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore JL, Telford MJ, Pisani D, Blaxter M, Lavrov DV. 2010 Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol. Evol. 2, 425–440. (doi:10.1093/gbe/evq030) Crossref, PubMed, Web of Science, Google Scholar
- 41Nardi F, Spinsanti G, Boore JL, Carapelli A, Dallai R, Frati F. 2003 Hexapod origins: monophyletic or paraphyletic? Science 299, 1887–1889. (doi:10.1126/science.1078607) Crossref, PubMed, Web of Science, Google Scholar
- 42Delsuc F, Phillips MJ, Penny D. 2003 Comment on ‘Hexapod origins: monophyletic or paraphyletic?’ Science 301, 1482; author reply 1482. (doi:10.1126/science.1086558) Crossref, PubMed, Web of Science, Google Scholar
- 43Hassanin A. 2006 Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol. Phylogenet. Evol. 38, 100–116. (doi:10.1016/j.ympev.2005.09.012) Crossref, PubMed, Web of Science, Google Scholar
- 44von Reumont BM 2012 Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol. Biol. Evol. 29, 1031–1045. (doi:10.1093/molbev/msr270) Crossref, PubMed, Web of Science, Google Scholar
- 45Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK. 2013 Phylotranscriptomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Mol. Biol. Evol. 30, 215–233. (doi:10.1093/molbev/mss216) Crossref, PubMed, Web of Science, Google Scholar
- 46Ertas B, von Reumont BM, Wägele J-W, Misof B, Burmester T. 2009 Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol. Biol. Evol. 26, 2711–2718. (doi:10.1093/molbev/msp186) Crossref, PubMed, Web of Science, Google Scholar
- 47Fanenbruck M, Harzsch S, Wägele JW. 2004 The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc. Natl Acad. Sci. USA 101, 3868–3873. (doi:10.1073/pnas.0306212101) Crossref, PubMed, Web of Science, Google Scholar
- 48Fanenbruck M, Harzsch S. 2005 A brain atlas of Godzilliognomus frondosus Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of Speleonectes tulumensis Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships. Arthropod Struct. Dev. 34, 343–378. (doi:10.1016/j.asd.2005.01.007) Crossref, Web of Science, Google Scholar
- 49Stemme T, Iliffe TM, Bicker G, Harzsch S, Koenemann S. 2012 Serotonin immunoreactive interneurons in the brain of the Remipedia: new insights into the phylogenetic affinities of an enigmatic crustacean taxon. BMC Evol. Biol. 12, 168. (doi:10.1186/1471-2148-12-168) Crossref, PubMed, Web of Science, Google Scholar
- 50Glenner H, Thomsen PF, Hebsgaard MB, Sorensen MV, Willerslev E. 2006 Evolution: the origin of insects. Science 314, 1883–1884. (doi:10.1126/science.1129844) Crossref, PubMed, Web of Science, Google Scholar
- 51Maloof AC, Porter SM, Moore JL, Dudás FÖ, Bowring SA, Higgins JA, Fike DA, Eddy MP. 2010 The earliest Cambrian record of animals and ocean geochemical change. GSA Bull. 122, 1731–1774. (doi:10.1130/B30346.1) Crossref, Web of Science, Google Scholar
- 52Legg DA. 2014 Sanctacaris uncata: the oldest chelicerate (Arthropoda). Naturwissenschaften 101, 1065–1073. (doi:10.1007/s00114-014-1245-4) Crossref, PubMed, Web of Science, Google Scholar
- 53Waloszek D, Dunlop JA. 2002 A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45, 421–446. (doi:10.1111/1475-4983.00244) Crossref, Web of Science, Google Scholar
- 54Harvey THP, Vélez MI, Butterfield NJ. 2012 Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. Proc. Natl Acad. Sci. USA 109, 1589–1594. (doi:10.1073/pnas.1115244109) Crossref, PubMed, Web of Science, Google Scholar
- 55Walossek D. 1993 The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata no. 32, 202 p. Oslo, Norway: Scandinavian University Press. Google Scholar
- 56MacNaughton RB, Cole JM, Dalrymple RW, Braddy SJ, Briggs DEG, Lukie TD. 2002 First steps on land: arthropod trackways in Cambrian–Ordovician eolian sandstone, southeastern Ontario, Canada. Geology 30, 391–394. (doi:10.1130/0091-7613(2002)030<0391:FSOLAT>2.0.CO;2) Crossref, Web of Science, Google Scholar
- 57Collette JH, Gass KC, Hagadorn JW. 2012 Protichnites eremita unshelled? experimental model-based neoichnology and new evidence for a euthycarcinoid affinity for this ichnospecies. J. Paleontol. 86, 442–454. (doi:10.1666/11-056.1) Crossref, Web of Science, Google Scholar
- 58Wilson HM, Anderson LI. 2004 Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland. J. Paleontol. 78, 169–184. (doi:10.1666/0022-3360(2004)078<0169:MATOPM>2.0.CO;2) Crossref, Web of Science, Google Scholar
- 59Shear WA, Edgecombe GD. 2010 The geological record and phylogeny of the Myriapoda. Arthropod Struct. Dev. 39, 174–190. (doi:10.1016/j.asd.2009.11.002) Crossref, PubMed, Web of Science, Google Scholar
- 60Edgecombe GD. 2004 Morphological data, extant Myriapoda, and the myriapod stem-group. Contrib. Zool. 73, 207–252. Crossref, Web of Science, Google Scholar
- 61Jeram AJ, Selden PA, Edwards D. 1990 Land animals in the Silurian: arachnids and myriapods from Shropshire, England. Science 250, 658–661. (doi:10.1126/science.250.4981.658) Crossref, PubMed, Web of Science, Google Scholar
- 62Scholtz G, Kamenz C. 2006 The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Zoology 109, 2–13. (doi:10.1016/j.zool.2005.06.003) Crossref, PubMed, Web of Science, Google Scholar
- 63Dunlop JA, Anderson LI, Braddy SJ. 2003 A redescription of Chasmataspis laurencii Caster and Brooks, 1956 (Chelicerata: Chasmataspidida) from the Middle Ordovician of Tennessee, USA, with remarks on chasmataspid phylogeny. Trans. R. Soc. Edinb. Earth Sci. 94, 207–225. (doi:10.1017/S0263593303000130) Crossref, Google Scholar
- 64Lamsdell JC. 2013 Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zool. J. Linn. Soc. 167, 1–27. (doi:10.1111/j.1096-3642.2012.00874.x) Crossref, Web of Science, Google Scholar
- 65Edwards D, Selden PA, Richardson JB, Axe L. 1995 Coprolites as evidence for plant–animal interaction in Siluro–Devonian terrestrial ecosystems. Nature 377, 329–331. (doi:10.1038/377329a0) Crossref, Web of Science, Google Scholar
- 66Parry SF, Noble SR, Crowley QG, Wellman CH. 2011 A high-precision U–Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications. J. Geol. Soc. Lond. 168, 863–872. (doi:10.1144/0016-76492010-043) Crossref, Web of Science, Google Scholar
- 67Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T. 2011 Dating the arthropod tree based on large-scale transcriptome data. Mol. Phylogenet. Evol. 61, 880–887. (doi:10.1016/j.ympev.2011.09.003) Crossref, PubMed, Web of Science, Google Scholar
- 68Rehm P, Meusemann K, Borner J, Misof B, Burmester T. 2014 Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing. Mol. Phylogenet. Evol. 77, 25–33. (doi:10.1016/j.ympev.2014.04.007) Crossref, PubMed, Web of Science, Google Scholar
- 69Brewer MS, Bond JE. 2013 Ordinal-level phylogenomics of the arthropod class Diplopoda (millipedes) based on an analysis of 221 nuclear protein-coding loci generated using next-generation sequence analyses. PLoS ONE 8, e79935. (doi:10.1371/journal.pone.0079935) Crossref, PubMed, Web of Science, Google Scholar
- 70Tong KJ, Duchêne S, Ho SYW, Lo N. 2015 Insect phylogenomics. Comment on ‘Phylogenomics resolves the timing and pattern of insect evolution’. Science 349, 487. (doi:10.1126/science.aaa5460) Crossref, PubMed, Web of Science, Google Scholar
- 71Wheat CW, Wahlberg N. 2013 Phylogenomic insights into the Cambrian explosion, the colonization of land and the evolution of flight in Arthropoda. Syst. Biol. 62, 93–109. (doi:10.1093/sysbio/sys074) Crossref, PubMed, Web of Science, Google Scholar
- 72Campbell LI 2011 MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc. Natl Acad. Sci. USA 108, 15 920–15 924. (doi:10.1073/pnas.1105499108) Crossref, Web of Science, Google Scholar
- 73Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. (doi:10.1093/nar/25.17.3389) Crossref, PubMed, Web of Science, Google Scholar
- 74Edgar RC. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. (doi:10.1093/nar/gkh340) Crossref, PubMed, Web of Science, Google Scholar
- 75Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010 New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. (doi:10.1093/sysbio/syq010) Crossref, PubMed, Web of Science, Google Scholar
- 76Castresana J. 2000 Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. (doi:10.1093/oxfordjournals.molbev.a026334) Crossref, PubMed, Web of Science, Google Scholar
- 77Kück P, Meusemann K. 2010 FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118. (doi:10.1016/j.ympev.2010.04.024) Crossref, PubMed, Web of Science, Google Scholar
- 78Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013 PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615. (doi:10.1093/sysbio/syt022) Crossref, PubMed, Web of Science, Google Scholar
- 79Lartillot N, Philippe H. 2004 A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109. (doi:10.1093/molbev/msh112) Crossref, PubMed, Web of Science, Google Scholar
- 80Lartillot N, Lepage T, Blanquart S. 2009 PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288. (doi:10.1093/bioinformatics/btp368) Crossref, PubMed, Web of Science, Google Scholar
- 81Lepage T, Bryant D, Philippe H, Lartillot N. 2007 A general comparison of relaxed molecular clock models. Mol. Biol. Evol. 24, 2669–2680. (doi:10.1093/molbev/msm193) Crossref, PubMed, Web of Science, Google Scholar
- 82Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006 Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88. (doi:10.1371/journal.pbio.0040088) Crossref, PubMed, Web of Science, Google Scholar
- 83Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011 The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097. (doi:10.1126/science.1206375) Crossref, PubMed, Web of Science, Google Scholar
- 84Paradis E, Claude J, Strimmer K. 2004 APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. (doi:10.1093/bioinformatics/btg412) Crossref, PubMed, Web of Science, Google Scholar
- 85Pagel M. 1994 Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. B 255, 37–45. (doi:10.1098/rspb.1994.0006) Link, Web of Science, Google Scholar
- 86Lewis PO. 2001 A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925. (doi:10.1080/106351501753462876) Crossref, PubMed, Web of Science, Google Scholar
- 87Stenderup JT, Olesen J, Glenner H. 2006 Molecular phylogeny of the Branchiopoda (Crustacea)–Multiple approaches suggest a ‘diplostracan’ ancestry of the Notostraca. Mol. Phylogenet. Evol. 41, 182–194. (doi:10.1016/j.ympev.2006.06.006) Crossref, PubMed, Web of Science, Google Scholar
- 88Olesen J. 2007 Monophyly and phylogeny of Branchiopoda, with focus on morphology and homologies of branchiopod phyllopodous limbs. J. Crustacean Biol. 27, 165–183. (doi:10.1651/S-2727.1) Crossref, Web of Science, Google Scholar
- 89Olesen J. 2009 Phylogeny of Branchiopoda (Crustacea)—character evolution and contribution of uniquely preserved fossils. Arthropod Syst. Phylogeny 67, 3–39. Google Scholar
- 90Wolfe JM, Hegna TA. 2014 Testing the phylogenetic position of Cambrian pancrustacean larval fossils by coding ontogenetic stages. Cladistics 30, 366–390. (doi:10.1111/cla.12051) Crossref, PubMed, Web of Science, Google Scholar
- 91Scourfield DJ. 1926 On a new type of crustacean from the Old Red Sandstone (Rhynie Chert Bed, Aberdeenshire)-Lepidocaris rhyniensis, gen. et sp. nov. Phil. Trans. R. Soc. Lond. B 214, 153–187. (doi:10.1098/rstb.1926.0005) Link, Google Scholar
- 92Fayers SR, Trewin NH. 2002 A new crustacean from the Early Devonian Rhynie chert, Aberdeenshire, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 93, 355–382. (doi:10.1017/S0263593302000196) Crossref, Google Scholar
- 93Novozhilov NI. 1957 Un nouvel ordre d'arthropodes particuliers: Kazacharthra du Lias des monts Ketmen: (Kazakhstan, SE., URSS). Bull. Soc. Géol. Fr. 7, 171–184. Crossref, Google Scholar
- 94Mathers TC, Hammond RL, Jenner RA, Hänfling B, Gómez A. 2013 Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’. PeerJ 1, e62. (doi:10.7717/peerj.62) Crossref, PubMed, Web of Science, Google Scholar
- 95Bapst DW. 2012 paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807. (doi:10.1111/j.2041-210X.2012.00223.x) Crossref, Web of Science, Google Scholar
- 96Smith MR, Ortega-Hernández J. 2014 Hallucigenia‘s onychophoran-like claws and the case for Tactopoda. Nature 514, 363–366. (doi:10.1038/nature13576) Crossref, PubMed, Web of Science, Google Scholar
- 97Dunn CW 2008 Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749. (doi:10.1038/nature06614) Crossref, PubMed, Web of Science, Google Scholar
- 98Laumer CE 2015 Spiralian phylogeny informs the evolution of microscopic lineages. Curr. Biol. 25, 2000–2006. (doi:10.1016/j.cub.2015.06.068) Crossref, PubMed, Web of Science, Google Scholar
- 99Fernández R, Laumer CE, Vahtera V, Libro S, Kaluziak S, Sharma PP, Pérez-Porro AR, Edgecombe GD, Giribet G. 2014 Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Mol. Biol. Evol. 31, 1500–1513. (doi:10.1093/molbev/msu108) Crossref, PubMed, Web of Science, Google Scholar
- 100Paradis E. 2012 Analysis of phylogenetics and evolution with R, 2nd edn. 386 p. New York, NY: Springer. Google Scholar
- 101Pisani D, Liu AG. 2015 Animal evolution: only rocks can set the clock. Curr. Biol. 25, 1079–1081. (doi:10.1016/j.cub.2015.10.015) Crossref, Web of Science, Google Scholar
- 102dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z. 2015 Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950. (doi:10.1016/j.cub.2015.09.066) Crossref, PubMed, Web of Science, Google Scholar
- 103Legg DA, Sutton MD, Edgecombe GD. 2013 Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat. Commun. 4, 2485. (doi:10.1038/ncomms3485) Crossref, PubMed, Web of Science, Google Scholar
- 104Battistuzzi FU, Billing-Ross P, Murillo O, Filipski A, Kumar S. 2015 A protocol for diagnosing the effect of calibration priors on posterior time estimates: a case study for the Cambrian explosion of animal phyla. Mol. Biol. Evol. 32, 1907–1912. (doi:10.1093/molbev/msv075) Crossref, PubMed, Web of Science, Google Scholar
- 105Wray GA, Levinton JS, Shapiro LH. 1996 Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274, 568–573. (doi:10.1126/science.274.5287.568) Crossref, Web of Science, Google Scholar
- 106Shelley RM, Golavatch SI. 2011 Atlas of myriapod biogeography. I. Indigenous ordinal and supra-ordinal distributions in the Diplopoda: Perspectives on taxon origins and ages, and a hypothesis on the origin and early evolution of the class. Insecta Mundi 158, 1–134. Google Scholar
- 107Dohle W. 1998 Myriapod–insect relationships as opposed to an insect-crustacean sister group relationship. In Arthropod relationships, pp. 305–315. London, UK: Chapman & Hall. Crossref, Google Scholar